Skip to main content

PhD fellowship in UAV based remote sensing for agriculture research Agriculture Victoria






PhD fellowship in UAV based remote sensing for agriculture research Agriculture Victoria
Are you enthusiastic about remote sensing in high-throughput phenotyping approaches for crop breeding research? If you are interested in employing UAVs, multispectral and LiDAR in extracting phenotyping parameters and understanding the underlying mechanism that governs crop yield, this PhD fellowship can be for you.
Understanding the interaction of genotype with the environment is of prime importance, which can be achieved by the measurement of phenotypic traits of the crop. The field of phenomics is a large-scale collection of data-set to study, analyze and understand the interaction of genomic variations with the varying environment by revealing the relation between genotype and phenotypes. Traditionally, plant phenotyping has been achieved by manually collecting the data from the plants to select the best performing genotype. Technological advancement in the plant phenotyping has been a topic of interest among interdisciplinary researchers in recent years. The efforts have been put into using and optimizing the available technologies to adapt to the need for plant phenotyping. From the perspective of non-invasive measurement of phenotypic traits, the state-of-the-art remote sensing technology of UAV based multispectral, photogrammetric and LiDAR is promising.
Project Outline and Tasks
Your primary responsibilities will be to:
· Optimise multispectral, photogrammetric and LiDAR sensor systems integrated on UAV platforms for high-throughput field phenotyping in grain crops, considering factors such as data sampling rate, field-of-view, sensitivity and modalities required for sensor operation.
Identify best practises in data processing and analysis for plant phenotyping, including generation of point cloud metrices, vegetation and morphological indices, segmentation, voxelization, classification, and 3D reconstruction of crops.
Participate in scientific conferences and workshops as well as events in the area of plant phenotyping and remote sensing.
Publish your findings in scientific journals.
Qualifications
Candidates are required to have:
· A Masters or Bachelors in agricultural science, remote sensing, computer science, electronics, or similar.
Experience with analysis of large data sets and scientific programming.
Desirable though not necessary,knowledge in computer vision, machine learning, data processing, spatial data analysis and GIS software will be valued.
Clear and concise communication skills in English.
A positive attitude, a strong drive and eagerness to learn.
Who is eligible?
Citizen form all nations are eligible and encouraged to apply. Australian citizens or Permanent Residents will be preferred considering the current situation with COVID-19 travel restrictions to timely start the PhD.
Assessment
The assessment of the applicants will be made by Dr. Surya Kant, Senior Research Scientist, Agriculture Victoria, Department of Jobs, Precincts and Regions | Principal Fellow Honorary, The University of Melbourne.
We offer
Established in 1853, the University of Melbourne is a public-spirited institution that makes distinctive contributions to society in research, learning and teaching and engagement. It's consistently ranked among the leading universities in the world, with international rankings of world universities placing it as number 1 in Australia and number 32 in the world (Times Higher Education World University Rankings 2017-2018).
Agriculture Victoria is a government enterprise that works with the agriculture industry on research, development and extension to improve production, connect the sector with international markets, support development and maintain effective biosecurity controls.
The successful candidate will receive:
A $33,000 p.a. (tax-free) scholarship for up to three and a half years
Professional development programs
Access to state-of-the-art technologies
The PhD fellowships will be based at Agriculture Victoria, Grains Innovation Park, Horsham, Victoria, Australia
Further information
Further information may be obtained from Dr. Surya Kant, Email: surya.kant[a]agriculture.vic.gov.au.
Application
Please submit your application to Dr. Surya Kant by Email: surya.kant[a]agriculture.vic.gov.au and Dr. Bikram Banerjee bikram.banerjee[a]agriculture.vic.gov.au
The application must include:
A letter motivating the application (cover letter)
Curriculum vitae
Grade transcripts for Bachelors or Masters degree
Thesis copy
Job Type: Full-time
Salary: $33,000.00 /year
Work Eligibility:
The candidate can work permanently with no restriction on hours (Preferred)
Work Remotely:
Temporarily due to COVID-19


....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Purvanchal Hills

The Purvanchal Hills are an eastern extension of the Himalayan system , bending southward from Arunachal Pradesh along the Indo-Myanmar border. They include a series of discontinuous hill ranges such as the Patkai Bum, Naga Hills, Manipur Hills, Mizo (Lushai) Hills, Barail Range, and the Meghalaya Plateau (Khasi, Jaintia, and Garo Hills) . They are geologically young fold mountains (Tertiary period) made of sedimentary rocks (sandstone, shale, siltstone) . Their structure is the result of the collision of the Indian and Eurasian Plates , which uplifted the Himalayan orogeny . Unlike the snow-clad Greater Himalayas, these hills are moderate in elevation (600–3000 m) , with dense forests, heavy rainfall, and humid climate . 1. Barail Range Location: Separates the Brahmaputra Valley (north) and Barak Valley (south) in Assam. Geomorphology: Tertiary folded ranges with elongated ridges and valleys. Drainage: Acts as a watershed between the Barak River and the Brahma...