Skip to main content

PhD fellowship in UAV based remote sensing for agriculture research Agriculture Victoria






PhD fellowship in UAV based remote sensing for agriculture research Agriculture Victoria
Are you enthusiastic about remote sensing in high-throughput phenotyping approaches for crop breeding research? If you are interested in employing UAVs, multispectral and LiDAR in extracting phenotyping parameters and understanding the underlying mechanism that governs crop yield, this PhD fellowship can be for you.
Understanding the interaction of genotype with the environment is of prime importance, which can be achieved by the measurement of phenotypic traits of the crop. The field of phenomics is a large-scale collection of data-set to study, analyze and understand the interaction of genomic variations with the varying environment by revealing the relation between genotype and phenotypes. Traditionally, plant phenotyping has been achieved by manually collecting the data from the plants to select the best performing genotype. Technological advancement in the plant phenotyping has been a topic of interest among interdisciplinary researchers in recent years. The efforts have been put into using and optimizing the available technologies to adapt to the need for plant phenotyping. From the perspective of non-invasive measurement of phenotypic traits, the state-of-the-art remote sensing technology of UAV based multispectral, photogrammetric and LiDAR is promising.
Project Outline and Tasks
Your primary responsibilities will be to:
· Optimise multispectral, photogrammetric and LiDAR sensor systems integrated on UAV platforms for high-throughput field phenotyping in grain crops, considering factors such as data sampling rate, field-of-view, sensitivity and modalities required for sensor operation.
Identify best practises in data processing and analysis for plant phenotyping, including generation of point cloud metrices, vegetation and morphological indices, segmentation, voxelization, classification, and 3D reconstruction of crops.
Participate in scientific conferences and workshops as well as events in the area of plant phenotyping and remote sensing.
Publish your findings in scientific journals.
Qualifications
Candidates are required to have:
· A Masters or Bachelors in agricultural science, remote sensing, computer science, electronics, or similar.
Experience with analysis of large data sets and scientific programming.
Desirable though not necessary,knowledge in computer vision, machine learning, data processing, spatial data analysis and GIS software will be valued.
Clear and concise communication skills in English.
A positive attitude, a strong drive and eagerness to learn.
Who is eligible?
Citizen form all nations are eligible and encouraged to apply. Australian citizens or Permanent Residents will be preferred considering the current situation with COVID-19 travel restrictions to timely start the PhD.
Assessment
The assessment of the applicants will be made by Dr. Surya Kant, Senior Research Scientist, Agriculture Victoria, Department of Jobs, Precincts and Regions | Principal Fellow Honorary, The University of Melbourne.
We offer
Established in 1853, the University of Melbourne is a public-spirited institution that makes distinctive contributions to society in research, learning and teaching and engagement. It's consistently ranked among the leading universities in the world, with international rankings of world universities placing it as number 1 in Australia and number 32 in the world (Times Higher Education World University Rankings 2017-2018).
Agriculture Victoria is a government enterprise that works with the agriculture industry on research, development and extension to improve production, connect the sector with international markets, support development and maintain effective biosecurity controls.
The successful candidate will receive:
A $33,000 p.a. (tax-free) scholarship for up to three and a half years
Professional development programs
Access to state-of-the-art technologies
The PhD fellowships will be based at Agriculture Victoria, Grains Innovation Park, Horsham, Victoria, Australia
Further information
Further information may be obtained from Dr. Surya Kant, Email: surya.kant[a]agriculture.vic.gov.au.
Application
Please submit your application to Dr. Surya Kant by Email: surya.kant[a]agriculture.vic.gov.au and Dr. Bikram Banerjee bikram.banerjee[a]agriculture.vic.gov.au
The application must include:
A letter motivating the application (cover letter)
Curriculum vitae
Grade transcripts for Bachelors or Masters degree
Thesis copy
Job Type: Full-time
Salary: $33,000.00 /year
Work Eligibility:
The candidate can work permanently with no restriction on hours (Preferred)
Work Remotely:
Temporarily due to COVID-19


....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Earthquake. Terminology and Concept

Earthquake It is a transient violent movement of the Earth's surface that follows a release of energy in the Earth's crust. 2. Magnitude It is a measure of the amount of energy released during an earthquake and expressed by Richter scale. Effect of earthquake according to Richter scale . Richter Magnitude Earthquake effects Less than 3.5 Generally not felt, but recorded. 3.5-5.4 Often felt, but rarely causes damage. Under 6.0 At most, slight damage to well-designed buildings. Can cause major damage to poorly constructed buildings over small regions. 6.1-6.9 Can be destructive in areas up to about 100 across where people live. 7.0-7.9 Major earthquake. Can cause serious damage over larger areas. 8 or greater Great Earthquake. Can cause serious damage in areas several hundred across. 3. Intensity Intensity is a qualitative measure of the actual shaking at a location during an Earthquake, and is assigned in Roman Capital Numerical. It refers to the effects of earthqu