Skip to main content

PhD fellowship in UAV based remote sensing for agriculture research Agriculture Victoria






PhD fellowship in UAV based remote sensing for agriculture research Agriculture Victoria
Are you enthusiastic about remote sensing in high-throughput phenotyping approaches for crop breeding research? If you are interested in employing UAVs, multispectral and LiDAR in extracting phenotyping parameters and understanding the underlying mechanism that governs crop yield, this PhD fellowship can be for you.
Understanding the interaction of genotype with the environment is of prime importance, which can be achieved by the measurement of phenotypic traits of the crop. The field of phenomics is a large-scale collection of data-set to study, analyze and understand the interaction of genomic variations with the varying environment by revealing the relation between genotype and phenotypes. Traditionally, plant phenotyping has been achieved by manually collecting the data from the plants to select the best performing genotype. Technological advancement in the plant phenotyping has been a topic of interest among interdisciplinary researchers in recent years. The efforts have been put into using and optimizing the available technologies to adapt to the need for plant phenotyping. From the perspective of non-invasive measurement of phenotypic traits, the state-of-the-art remote sensing technology of UAV based multispectral, photogrammetric and LiDAR is promising.
Project Outline and Tasks
Your primary responsibilities will be to:
· Optimise multispectral, photogrammetric and LiDAR sensor systems integrated on UAV platforms for high-throughput field phenotyping in grain crops, considering factors such as data sampling rate, field-of-view, sensitivity and modalities required for sensor operation.
Identify best practises in data processing and analysis for plant phenotyping, including generation of point cloud metrices, vegetation and morphological indices, segmentation, voxelization, classification, and 3D reconstruction of crops.
Participate in scientific conferences and workshops as well as events in the area of plant phenotyping and remote sensing.
Publish your findings in scientific journals.
Qualifications
Candidates are required to have:
· A Masters or Bachelors in agricultural science, remote sensing, computer science, electronics, or similar.
Experience with analysis of large data sets and scientific programming.
Desirable though not necessary,knowledge in computer vision, machine learning, data processing, spatial data analysis and GIS software will be valued.
Clear and concise communication skills in English.
A positive attitude, a strong drive and eagerness to learn.
Who is eligible?
Citizen form all nations are eligible and encouraged to apply. Australian citizens or Permanent Residents will be preferred considering the current situation with COVID-19 travel restrictions to timely start the PhD.
Assessment
The assessment of the applicants will be made by Dr. Surya Kant, Senior Research Scientist, Agriculture Victoria, Department of Jobs, Precincts and Regions | Principal Fellow Honorary, The University of Melbourne.
We offer
Established in 1853, the University of Melbourne is a public-spirited institution that makes distinctive contributions to society in research, learning and teaching and engagement. It's consistently ranked among the leading universities in the world, with international rankings of world universities placing it as number 1 in Australia and number 32 in the world (Times Higher Education World University Rankings 2017-2018).
Agriculture Victoria is a government enterprise that works with the agriculture industry on research, development and extension to improve production, connect the sector with international markets, support development and maintain effective biosecurity controls.
The successful candidate will receive:
A $33,000 p.a. (tax-free) scholarship for up to three and a half years
Professional development programs
Access to state-of-the-art technologies
The PhD fellowships will be based at Agriculture Victoria, Grains Innovation Park, Horsham, Victoria, Australia
Further information
Further information may be obtained from Dr. Surya Kant, Email: surya.kant[a]agriculture.vic.gov.au.
Application
Please submit your application to Dr. Surya Kant by Email: surya.kant[a]agriculture.vic.gov.au and Dr. Bikram Banerjee bikram.banerjee[a]agriculture.vic.gov.au
The application must include:
A letter motivating the application (cover letter)
Curriculum vitae
Grade transcripts for Bachelors or Masters degree
Thesis copy
Job Type: Full-time
Salary: $33,000.00 /year
Work Eligibility:
The candidate can work permanently with no restriction on hours (Preferred)
Work Remotely:
Temporarily due to COVID-19


....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud