Skip to main content

NASA's Applied Remote Sensing Training Program (ARSET) has opened registration for Three New Open, Online NASA ARSET Remote Sensing Training (June-July 2020)

NASA's Applied Remote Sensing Training Program (ARSET) has opened registration for Three New Open, Online NASA ARSET Remote Sensing Training (June-July 2020)




Groundwater Monitoring using Observations from NASA's Gravity Recovery and Climate Experiment (GRACE) Missions (June 25, 2020)  Bilingual (English and Spanish)    
The webinar will provide an overview of the GRACE missions, groundwater data availability, and their applications in the monitoring and management of water resources. 

Understanding Phenology with Remote Sensing (June 30, July 7, 14, 2020)
This training series will focus on the use of remote sensing to understand vegetation phenology: the study of life-cycle events.
 
Advanced Webinar: Using Earth Observations to Monitor Water Budgets for River Basin Management II (July 21, 28,August 4, 2020)
This 3-part series will include lectures and hands-on exercises for participants to estimate water budgets for a given river basin. 

Please see below for more details for each training.  

NASA's Applied Remote Sensing Training Program (ARSET) program offers satellite remote sensing training that builds the skills to integrate NASA Earth Science data into an agency's and organization's decision-making activities. As all NASA data is open and free, so are ARSET trainings. 

All the best, 

Brock Blevins

Training Coordinator
Science Systems and Applications, Inc. (SSAI)
NASA Applied Remote Sensing Training Program (ARSET)
402-578-7313


Groundwater Monitoring using Observations from NASA's Gravity Recovery and Climate Experiment (GRACE) Missions (June 25, 2020)
Bilingual (English and Spanish)

Groundwater makes up roughly 30% of global freshwater. It also provides drinking water for the world's population, and irrigation for close to 1/3rd of global agricultural land. Because of this level of reliance, monitoring groundwater is crucial for water resources and land management. The Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) missions from NASA and the German Research Centre for Geosciences (GFZ) provide large-scale terrestrial water storage estimation from mid-2000 to present. The mission uses twin satellites to accurately map variations in the Earth's gravity field and surface mass distribution.

GRACE observations have been used for detecting groundwater depletion and for drought and flood predictions. This lightning-style training is designed to answer the demand and interest from the applications community in technologies that can be used to support water resources management. The webinar will provide an overview of the GRACE missions, groundwater data availability, and their applications in the monitoring and management of water resources. This lightning webinar will also serve as the foundation for the upcoming advanced webinar: Using Earth Observations to Monitor Water Budgets for River Basin Management II.

Course Date and Times: June 25, 2020
Register Here: English (11:00-12:30 ET)
Register Here: Spanish (14:00-15:30 ET)
Learning Objectives: By the end of this training, attendees will be able to access GRACE data and analyze regional groundwater changes

Course Format: A single, 1.5-hour webinar that includes a lecture and a question & answer session; One session offered in English (11:00-12:30 ET) and one in Spanish (14:00-15:30 ET)

Audience: The content of this training was developed for local, regional, state, federal, and international organizations engaged in the management of water resources, irrigation, and agricultural management.

Relevant UN Sustainable Development Goals: 
Target 6.4: By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity




Understanding Phenology with Remote Sensing (June 30, July 7, 14, 2020)

This training will focus on the use of remote sensing to understand phenology: the study of life-cycle events. Phenological patterns and processes can vary greatly across a range of spatial and temporal scales, and can provide insights about ecological processes like invasive species encroachment, drought, wildlife habitat, and wildfire potential. This training will highlight NASA-funded tools to observe and study phenology across a range of scales. Attendees will be exposed to the latest in phenological observatory networks and science, and how these observations relate to ecosystem services, the carbon cycle, biodiversity, and conservation.

Course Dates: June 30, 2020. July 7,14, 2020

Time: 11:00 AM - 12:00 PM EDT (UTC-4)

Register Here

Learning Objectives: By the end of this training series, attendees will be able to:
Summarize NASA satellites and sensors that can be used for monitoring global phenology patterns
Outline the benefits and limitations of NASA data for phenology
Describe the multi-scalar approach to vegetation life cycle analyses
Compare and contrast data from multiple phenology networks
Evaluate various projects and case-study examples of phenological data
Course Format: Three, one-hour sessions

Audience: This training is designed for individuals and organizations interested in using satellite imagery for mapping vegetation health and seasonal patterns. 

Relevant UN Sustainable Development Goals:
Goal 13: Take urgent action to combat climate change and its impacts 
Goal 15: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss




Advanced Webinar: Using Earth Observations to Monitor Water Budgets for River Basin Management II (July 21, 28,August 4, 2020)

Rivers are a major source of freshwater. They support aquatic and terrestrial ecosystems, provide transportation, generate hydropower, and when treated, provide drinking and agricultural water. Estimating and monitoring water budgets within a river basin is required for sustainable management of water resources and flooding within watersheds. This advanced-level webinar series will focus on the use of NASA Earth observations and Earth system-modeled data for estimating water budgets in river basins.

Past ARSET trainings on monitoring water budgets for river basins focused on data sources relevant for river basin monitoring and management, and provided case studies for estimating the water budget of a watershed using remote sensing products. This advanced webinar will include lectures and hands-on exercises for participants to estimate water budgets for a given river basin.

Course Dates: July 21, 28, and August 4, 2020.

Times: 10:00-12:00 & 16:00-18:00 EDT (UTC-4); There will be identical sessions at two different times of the day

Register Here

Learning Objectives: By the end of this training, attendees will be able to:
Identify and access remote sensing and Earth system-modeled data for estimating water budgets in a river basin
Explain the uncertainties involved in estimating water budgets for river basins
Replicate the steps for estimating water budgets for a river basin and sub-watersheds using remote sensing products and GIS
Course Format: Three, two-hour parts that include lectures and demonstrations, exercises, and question and answer sessions. Each webinar will be broadcast in English with training materials available in Spanish.

Audience: The content of this training was developed for local, regional, state, federal, and international organizations engaged in the management of water resources, river basins, floods, droughts, land development, river transportation, hydroelectric power, and reservoirs.

Relevant UN Sustainable Development Goals: 

Target 6.4: By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity
Target 6.5: By 20Retweet Option:30, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate

-- 
You received this message because you are subscribed to the Google Groups "Conservation Remote Sensing Network (CRSNet)" group.
To unsubscribe from this group and stop receiving emails from it, send an email to Conservation_RS+unsubscribe@googlegroups.com.


....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc
🌏🌎
🌐🌍

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.