Skip to main content

The international M.Sc. program EAGLE Applied Earth Observation and Geoanalysis of the Living Environment Remote Sensing and GIS



The international M.Sc. program EAGLE

Applied Earth Observation and Geoanalysis of the Living Environment

is a M.Sc. program dedicated to applied remote sensing for environmental
research.

EAGLE lectures, seminars, and practicals provide in depth methodological
knowledge and practical skills, and additionally provide a comprehensive
overview of the range of remote sensing applications. The potential of Earth
Observation data analyses for research on and management of forest-,
agro-, or
coastal ecosystems or the urban sphere – to name only a few examples –
will be
illuminated. Please browse through our courses in order to get a good
overview
of content and aims.

Application for the upcoming winter term are accepted until May 15th.

More details on the application process at

EAGLE is an international English language M.Sc. program offered at the
University of Würzburg, Germany. It is focusing on Applied Earth Observation
and Geoanalysis of the environment. The goal of EAGLE is to strengthen the
practical use of applied Earth Observation in research, planning, and
decision
making, and to unlock the full potential of remote sensing data analyses
in your
desired field of application.



EAGLE students are subsequently encouraged to further develop and deepen
their
knowledge and skills tailored to their personal interests during
internships and
innovation laboratories at international partner institutions of the EAGLE
network

The EAGLE study program is a joint initiative of the Institute of
Geography and
Geology at the University of Würzburg, led by the Department of Remote
Sensing in collaboration with the Earth Observation Center at the German
Aerospace Center (DLR-EOC). The courses are taught in English by a team of
internationally recognized researchers from diverse backgrounds.

The accredited (120 ECTS) University degree is open for students from a
variety
of disciplines such as geography, geology, hydrology, ecology, biology, and
other fields in environmental sciences and studies.

for more details please visit: http://www.eagle-science.org


-- 
You received this message because you are subscribed to the Google Groups "Conservation Remote Sensing Network (CRSNet)" group.
To unsubscribe from this group and stop receiving emails from it, send an email to Conservation_RS+unsubscribe@googlegroups.com.


....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Groundwater – Porosity and Permeability

Groundwater refers to the water that resides beneath the Earth's surface in the pores and crevices of rock, sediment, and soil. Two key properties that influence the movement and storage of groundwater are porosity and permeability: 1. Porosity:    - Definition: Porosity refers to the volume percentage of void spaces (pores or openings) in a geological material, such as soil or rock.    - Role: Porosity determines how much water a subsurface material can hold. It is a measure of the material's capacity to store water.    - Factors: Porosity is influenced by the size and arrangement of particles within the material. Highly porous materials have more void spaces, while less porous materials have fewer.    - Units: Porosity is expressed as a percentage, with 0% indicating complete solidity (no pore spaces) and 100% indicating complete void space. 2. Permeability:    - Definition: Permeability refers to the ability of a geological material to transmit fluids, such as water. It meas

Ground Water

Groundwater Terminology, Concepts, and Facts Key Terms Aquifer: A geological formation that can store and transmit significant quantities of water. Water Table: The upper surface of the saturated zone in an aquifer. Recharge: The process of replenishing groundwater through precipitation or other sources. Discharge: The process of groundwater flowing out of an aquifer, typically into surface water bodies or through wells. Hydraulic Gradient: The slope of the water table. Darcy's Law: A law that describes the flow of groundwater through porous media. Permeability: The ability of a material to transmit water. Porosity: The amount of void space in a material. Concepts Groundwater Flow: Groundwater moves from areas of higher hydraulic head to areas of lower hydraulic head. Groundwater Contamination: The introduction of pollutants into groundwater. Groundwater Depletion: The excessive extraction of groundwater, leading to a decline in water table levels. Saltwater Intrusion:

Artisan Wells Basins

Artisan Wells and Basins Artesian wells are a type of well that harnesses the natural pressure of water trapped underground to force water to the surface without pumping. This phenomenon occurs in specific geological formations known as artesian basins . Key Terminologies and Concepts Aquifer: A geological formation that can store and transmit water. It is typically made up of porous rocks or sediments like sandstone or gravel. Confined Aquifer: An aquifer that is sandwiched between two impermeable layers (like clay or shale) that prevent water from escaping. Artesian Basin: A geological structure where a confined aquifer is tilted and has a recharge area at a higher elevation than the discharge area. This creates a pressure gradient that forces water to flow upwards. Potentiometric Surface: The theoretical level to which water would rise in a well drilled into an artesian aquifer if there were no restrictions. It is determined by the pressure head in the aquifer. Flowing Artesian

Watershed. Catchment. Basin

A watershed, also known as a river basin or drainage basin, is a fundamental concept in geohydrology and hydrology. It refers to a specific geographic area or region of land where all the surface water, including rainfall, snowmelt, and runoff, drains into a common outlet, such as a river, lake, or ocean. Here's an explanation of each term: 1. Watershed: A watershed is essentially a natural hydrological unit defined by the topography of the land. It represents the entire area from which all precipitation and surface water flow eventually gathers at a single point. This point is typically where the main river or stream within the watershed exits into a larger body of water, such as an ocean. Watersheds come in various sizes, from small ones that encompass a few square miles to enormous ones that cover entire continents. 2. River/Drainage Basin: A river basin or drainage basin is another way to describe a watershed. It's the land area that collects and channels water into a river

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t