Skip to main content

The international M.Sc. program EAGLE Applied Earth Observation and Geoanalysis of the Living Environment Remote Sensing and GIS



The international M.Sc. program EAGLE

Applied Earth Observation and Geoanalysis of the Living Environment

is a M.Sc. program dedicated to applied remote sensing for environmental
research.

EAGLE lectures, seminars, and practicals provide in depth methodological
knowledge and practical skills, and additionally provide a comprehensive
overview of the range of remote sensing applications. The potential of Earth
Observation data analyses for research on and management of forest-,
agro-, or
coastal ecosystems or the urban sphere – to name only a few examples –
will be
illuminated. Please browse through our courses in order to get a good
overview
of content and aims.

Application for the upcoming winter term are accepted until May 15th.

More details on the application process at

EAGLE is an international English language M.Sc. program offered at the
University of Würzburg, Germany. It is focusing on Applied Earth Observation
and Geoanalysis of the environment. The goal of EAGLE is to strengthen the
practical use of applied Earth Observation in research, planning, and
decision
making, and to unlock the full potential of remote sensing data analyses
in your
desired field of application.



EAGLE students are subsequently encouraged to further develop and deepen
their
knowledge and skills tailored to their personal interests during
internships and
innovation laboratories at international partner institutions of the EAGLE
network

The EAGLE study program is a joint initiative of the Institute of
Geography and
Geology at the University of Würzburg, led by the Department of Remote
Sensing in collaboration with the Earth Observation Center at the German
Aerospace Center (DLR-EOC). The courses are taught in English by a team of
internationally recognized researchers from diverse backgrounds.

The accredited (120 ECTS) University degree is open for students from a
variety
of disciplines such as geography, geology, hydrology, ecology, biology, and
other fields in environmental sciences and studies.

for more details please visit: http://www.eagle-science.org


-- 
You received this message because you are subscribed to the Google Groups "Conservation Remote Sensing Network (CRSNet)" group.
To unsubscribe from this group and stop receiving emails from it, send an email to Conservation_RS+unsubscribe@googlegroups.com.


....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud