Skip to main content

PhD, PostDoc, Group Leader and Guest Professor Positions in the area of Machine Learning and Data Analytics in Earth Observation (AI4EO).


we have several open PhD, PostDoc, Group Leader and Guest Professor Positions in the area of Machine Learning and Data Analytics in Earth Observation (AI4EO).
PhD, PostDoc, and Group Leader (Wissenschaftliche/r Mitarbeiter/in)
 

Zhu lab is a joint venue of the Professorship for Signal Processing in Earth Observation at the Technical University of Munich [www.sipeo.bgu.tum.de] and the Department EO Data Science of the Remote Sensing Technology Institute of the German Aerospace Center (DLR) [https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12785/22743_read-52854/]. We develop innovative signal processing and machine learning algorithms to extract geo-information from big geospatial data, ranging from remote sensing satellite data and even social media data. As downstream applications, we provide large scale and highly accurate geo-information to address societal grand challenges, such as monitoring the global urbanization, climate research and supporting the sustainable development goals of the United Nations. Our lab offers currently several open positions for outstanding PhD Candidates, postdocs, and senior scientists at either the Technical University Munich (TUM) or the German Aerospace Center (DLR). We also have open positions for outstanding research engineers.

 

Topics of particular interest to the group include:

-        Earth Observation and Computer Vision

-        Machine Learning/Deep Learning

-        Unsupervised/weakly Supervised Learning

-        Uncertainty Analysis, Interpretation and Reasoning of Deep Neural Networks 

-        AutoML

-        Anomaly and Change Detection Methods

-        Geo-information Extraction from Social Media Data

-        Natural Language Processing

-        Large-Scale Data Mining and Knowledge Discovery in Earth Observation

-        Big Data Management

-        High-performance Computing

-        Statistical Learning, Modelling, Spatial and Temporal Analysis of Geographical Observations

-        Geo-referencing, Digitalization, Building and Maintaining Large Relational Data Bases and Geo-databases, Publishing Geo-services (i.e. Web Map Services)

 

Demonstrated hands-on experience in one or more of these areas is a requirement. Postdoc applicants should have an excellent publication record and a PhD in machine learning, computer science, statistics, remote sensing, mathematics or a related discipline. Research engineer applicants should have excellent coding skills, as well as practical skills in data science and/or deep learning, and experience with scripting and running large-scale experiments.

 

Application materials comprise:

-        CV

-        Full set of transcripts

-        Statement of purpose

-        Briefly state what drives you and what are your goals in applying to the SiPEO lab

-        Names for at least 2 reference letter writers

                             For each reference, please include name, title, and email address.

                             References should expect to be contacted for a reference letter.

 

Please submit these documents to ai@DLR.de.  Please kindly consider that due to the high requests, we will not be able to consider incomplete applications.

 

AI4EO Guest Professors
 

In the framework of the BMBF funded German International AI Future Lab AI4EO, we have also a couple of slots free for guest professors with a pay scale from W1 to W3. Should you be working on any of the three topics 1) reasoning; 2) uncertainty and 3) Ethics in AI4EO and be interested in visiting us in Munich for 18 to 36 month, please kindly in direct contact with Prof. Dr. Xiaoxiang Zhu (xiaoxiang.zhu@dlr.de)

 

About Us:

 

The Technical University of Munich (TUM):

The Technical University of Munich (TUM) is one of Europe's top universities. It is committed to excellence in research and teaching, interdisciplinary education and the active promotion of promising young scientists. The university also forges strong links with companies and scientific institutions across the world. TUM was one of the first universities in Germany to be named a University of Excellence. Moreover, TUM regularly ranks among the best European universities in international rankings.

 

German Aerospace Center (DLR):

As a member of the Helmholtz Association of German Research Centers, the German Aerospace (DLR) employs more than 8000 people at 20 locations. The department "EO Data Science" at the Remote Sensing Technology Institute (IMF-DAS), located at the DLR in Oberpfaffenhofen is developing novel signal processing and AI algorithms to improve information retrieval from remote sensing data, in particular those from current and the next generation of Earth observation missions and deliver crucial geo-information to address social grant challenges, such as urbanization and climate change.

 

Resources and opportunities for collaboration:

·       Both at TUM and DLR, we are equipped with state-of-the-art computational resources such as DGX servers. In addition, we are closely collaborating with the Leibniz Supercomputing Centre (LRZ), which provides us with access to one of the most powerful supercomputing environments in Europe.

 

·       Helmholtz AI: The Helmholtz AI [link] platform aims to enhance the research within the Helmholtz Association with applied AI methods. For that each research area of Helmholtz operates HAICU units to work on short, medium and long term AI projects. IMF-DAS operates the local Helmholtz AI unit "MASTr: HAICU Munich @ Aeronautics, Space and Transport". It consists of a Young Investigator Group (YIG) in Earth observation and an AI Consulting Team, providing the expertise from Earth Observation, robotics, computer vision and an HPC/HPDA support unit. Currently we are looking for an enthusiastic Head of the YIG in the field of Large-Scale Data Mining in Earth Observation, and two PhD students.

 

·       Future AI Lab on Artificial Intelligence in Earth Observation: For the BMBF-funded Future Lab on Artificial Intelligence in Earth Observation (AI4EO), we are looking for one science manager and two PostDocs to form the backbone team of the lab starting from May 1, 2020. The Future Lab will bring together 12 highly renowned senior scientists and dozens of junior scientists from across the globe to carry out cutting-edge AI4EO research that will help to bring AI4EO to the next level. The research topics include but are not limited to reasoning, uncertainty and ethics in AI4EO.

 

 

Best regards,

Xiaoxiang Zhu

 

——————————————————

Prof. Dr.-Ing. habil. Xiaoxiang Zhu

Direcor of the German International Future AI Lab „AI4EO"

Technical University of Munich (TUM) & German Aerospace Center (DLR)

Department of Aerospace and Geodesy| Willy-Messerschmitt-Str. 1 | 82024 Taufkirchen/Ottobrunn | Germany
Website: www.ai4eo.de (up soon)

Head of Department "EO Data Science"

German Aerospace Center (DLR)

Earth Observation Center | Remote Sensing Technology Institute | Department of EO Data Science | Oberpfaffenhofen | 82234 Wessling | Germany

Telephone +49 81-5328-3531 | Telefax +49 81-5328-1420 | xiaoxiang.zhu@dlr.de

 

Professor for Signal Processing in Earth Observation

Technical University of Munich (TUM)
Signal Processing in Earth Observation| Arcisstrasse 21 | 80333 Munich | Germany

Telephone +49 89-289-22659 | Telefax +49 89-289-23202 | xiaoxiang.zhu@tum.de

 

Please visit my DLR-TUM joint research group here http://www.sipeo.bgu.tum.de/


🌍
🌏
🌎
🌐
😀
👍🏾
#Globe
#Earth
#Map
#Decision Making
#Cartography
#Cartographer
#Geography
#Geographer
#GIS
#Remote_Sensing
#RemoteSensing, #GeospatialEducation, #GeoEducation, #government, #LocalGovernment, #BigData, #geospatial, #GeoOps #ChangeDetection, #LocationIntelligence, #LocationTechnology, #SmartCities, #SmartCity, #Geomatics, #Geoinformatics, #Geology, #surveying
#StaySafe, #StayHome, #StayHealthy
#Scholarship, #Scholarships, #Onlinecourse, #Onlineducation

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...