Skip to main content

PhD, PostDoc, Group Leader and Guest Professor Positions in the area of Machine Learning and Data Analytics in Earth Observation (AI4EO).


we have several open PhD, PostDoc, Group Leader and Guest Professor Positions in the area of Machine Learning and Data Analytics in Earth Observation (AI4EO).
PhD, PostDoc, and Group Leader (Wissenschaftliche/r Mitarbeiter/in)
 

Zhu lab is a joint venue of the Professorship for Signal Processing in Earth Observation at the Technical University of Munich [www.sipeo.bgu.tum.de] and the Department EO Data Science of the Remote Sensing Technology Institute of the German Aerospace Center (DLR) [https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12785/22743_read-52854/]. We develop innovative signal processing and machine learning algorithms to extract geo-information from big geospatial data, ranging from remote sensing satellite data and even social media data. As downstream applications, we provide large scale and highly accurate geo-information to address societal grand challenges, such as monitoring the global urbanization, climate research and supporting the sustainable development goals of the United Nations. Our lab offers currently several open positions for outstanding PhD Candidates, postdocs, and senior scientists at either the Technical University Munich (TUM) or the German Aerospace Center (DLR). We also have open positions for outstanding research engineers.

 

Topics of particular interest to the group include:

-        Earth Observation and Computer Vision

-        Machine Learning/Deep Learning

-        Unsupervised/weakly Supervised Learning

-        Uncertainty Analysis, Interpretation and Reasoning of Deep Neural Networks 

-        AutoML

-        Anomaly and Change Detection Methods

-        Geo-information Extraction from Social Media Data

-        Natural Language Processing

-        Large-Scale Data Mining and Knowledge Discovery in Earth Observation

-        Big Data Management

-        High-performance Computing

-        Statistical Learning, Modelling, Spatial and Temporal Analysis of Geographical Observations

-        Geo-referencing, Digitalization, Building and Maintaining Large Relational Data Bases and Geo-databases, Publishing Geo-services (i.e. Web Map Services)

 

Demonstrated hands-on experience in one or more of these areas is a requirement. Postdoc applicants should have an excellent publication record and a PhD in machine learning, computer science, statistics, remote sensing, mathematics or a related discipline. Research engineer applicants should have excellent coding skills, as well as practical skills in data science and/or deep learning, and experience with scripting and running large-scale experiments.

 

Application materials comprise:

-        CV

-        Full set of transcripts

-        Statement of purpose

-        Briefly state what drives you and what are your goals in applying to the SiPEO lab

-        Names for at least 2 reference letter writers

                             For each reference, please include name, title, and email address.

                             References should expect to be contacted for a reference letter.

 

Please submit these documents to ai@DLR.de.  Please kindly consider that due to the high requests, we will not be able to consider incomplete applications.

 

AI4EO Guest Professors
 

In the framework of the BMBF funded German International AI Future Lab AI4EO, we have also a couple of slots free for guest professors with a pay scale from W1 to W3. Should you be working on any of the three topics 1) reasoning; 2) uncertainty and 3) Ethics in AI4EO and be interested in visiting us in Munich for 18 to 36 month, please kindly in direct contact with Prof. Dr. Xiaoxiang Zhu (xiaoxiang.zhu@dlr.de)

 

About Us:

 

The Technical University of Munich (TUM):

The Technical University of Munich (TUM) is one of Europe's top universities. It is committed to excellence in research and teaching, interdisciplinary education and the active promotion of promising young scientists. The university also forges strong links with companies and scientific institutions across the world. TUM was one of the first universities in Germany to be named a University of Excellence. Moreover, TUM regularly ranks among the best European universities in international rankings.

 

German Aerospace Center (DLR):

As a member of the Helmholtz Association of German Research Centers, the German Aerospace (DLR) employs more than 8000 people at 20 locations. The department "EO Data Science" at the Remote Sensing Technology Institute (IMF-DAS), located at the DLR in Oberpfaffenhofen is developing novel signal processing and AI algorithms to improve information retrieval from remote sensing data, in particular those from current and the next generation of Earth observation missions and deliver crucial geo-information to address social grant challenges, such as urbanization and climate change.

 

Resources and opportunities for collaboration:

·       Both at TUM and DLR, we are equipped with state-of-the-art computational resources such as DGX servers. In addition, we are closely collaborating with the Leibniz Supercomputing Centre (LRZ), which provides us with access to one of the most powerful supercomputing environments in Europe.

 

·       Helmholtz AI: The Helmholtz AI [link] platform aims to enhance the research within the Helmholtz Association with applied AI methods. For that each research area of Helmholtz operates HAICU units to work on short, medium and long term AI projects. IMF-DAS operates the local Helmholtz AI unit "MASTr: HAICU Munich @ Aeronautics, Space and Transport". It consists of a Young Investigator Group (YIG) in Earth observation and an AI Consulting Team, providing the expertise from Earth Observation, robotics, computer vision and an HPC/HPDA support unit. Currently we are looking for an enthusiastic Head of the YIG in the field of Large-Scale Data Mining in Earth Observation, and two PhD students.

 

·       Future AI Lab on Artificial Intelligence in Earth Observation: For the BMBF-funded Future Lab on Artificial Intelligence in Earth Observation (AI4EO), we are looking for one science manager and two PostDocs to form the backbone team of the lab starting from May 1, 2020. The Future Lab will bring together 12 highly renowned senior scientists and dozens of junior scientists from across the globe to carry out cutting-edge AI4EO research that will help to bring AI4EO to the next level. The research topics include but are not limited to reasoning, uncertainty and ethics in AI4EO.

 

 

Best regards,

Xiaoxiang Zhu

 

——————————————————

Prof. Dr.-Ing. habil. Xiaoxiang Zhu

Direcor of the German International Future AI Lab „AI4EO"

Technical University of Munich (TUM) & German Aerospace Center (DLR)

Department of Aerospace and Geodesy| Willy-Messerschmitt-Str. 1 | 82024 Taufkirchen/Ottobrunn | Germany
Website: www.ai4eo.de (up soon)

Head of Department "EO Data Science"

German Aerospace Center (DLR)

Earth Observation Center | Remote Sensing Technology Institute | Department of EO Data Science | Oberpfaffenhofen | 82234 Wessling | Germany

Telephone +49 81-5328-3531 | Telefax +49 81-5328-1420 | xiaoxiang.zhu@dlr.de

 

Professor for Signal Processing in Earth Observation

Technical University of Munich (TUM)
Signal Processing in Earth Observation| Arcisstrasse 21 | 80333 Munich | Germany

Telephone +49 89-289-22659 | Telefax +49 89-289-23202 | xiaoxiang.zhu@tum.de

 

Please visit my DLR-TUM joint research group here http://www.sipeo.bgu.tum.de/


🌍
🌏
🌎
🌐
😀
👍🏾
#Globe
#Earth
#Map
#Decision Making
#Cartography
#Cartographer
#Geography
#Geographer
#GIS
#Remote_Sensing
#RemoteSensing, #GeospatialEducation, #GeoEducation, #government, #LocalGovernment, #BigData, #geospatial, #GeoOps #ChangeDetection, #LocationIntelligence, #LocationTechnology, #SmartCities, #SmartCity, #Geomatics, #Geoinformatics, #Geology, #surveying
#StaySafe, #StayHome, #StayHealthy
#Scholarship, #Scholarships, #Onlinecourse, #Onlineducation

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...