Skip to main content

PhD, PostDoc, Group Leader and Guest Professor Positions in the area of Machine Learning and Data Analytics in Earth Observation (AI4EO).


we have several open PhD, PostDoc, Group Leader and Guest Professor Positions in the area of Machine Learning and Data Analytics in Earth Observation (AI4EO).
PhD, PostDoc, and Group Leader (Wissenschaftliche/r Mitarbeiter/in)
 

Zhu lab is a joint venue of the Professorship for Signal Processing in Earth Observation at the Technical University of Munich [www.sipeo.bgu.tum.de] and the Department EO Data Science of the Remote Sensing Technology Institute of the German Aerospace Center (DLR) [https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12785/22743_read-52854/]. We develop innovative signal processing and machine learning algorithms to extract geo-information from big geospatial data, ranging from remote sensing satellite data and even social media data. As downstream applications, we provide large scale and highly accurate geo-information to address societal grand challenges, such as monitoring the global urbanization, climate research and supporting the sustainable development goals of the United Nations. Our lab offers currently several open positions for outstanding PhD Candidates, postdocs, and senior scientists at either the Technical University Munich (TUM) or the German Aerospace Center (DLR). We also have open positions for outstanding research engineers.

 

Topics of particular interest to the group include:

-        Earth Observation and Computer Vision

-        Machine Learning/Deep Learning

-        Unsupervised/weakly Supervised Learning

-        Uncertainty Analysis, Interpretation and Reasoning of Deep Neural Networks 

-        AutoML

-        Anomaly and Change Detection Methods

-        Geo-information Extraction from Social Media Data

-        Natural Language Processing

-        Large-Scale Data Mining and Knowledge Discovery in Earth Observation

-        Big Data Management

-        High-performance Computing

-        Statistical Learning, Modelling, Spatial and Temporal Analysis of Geographical Observations

-        Geo-referencing, Digitalization, Building and Maintaining Large Relational Data Bases and Geo-databases, Publishing Geo-services (i.e. Web Map Services)

 

Demonstrated hands-on experience in one or more of these areas is a requirement. Postdoc applicants should have an excellent publication record and a PhD in machine learning, computer science, statistics, remote sensing, mathematics or a related discipline. Research engineer applicants should have excellent coding skills, as well as practical skills in data science and/or deep learning, and experience with scripting and running large-scale experiments.

 

Application materials comprise:

-        CV

-        Full set of transcripts

-        Statement of purpose

-        Briefly state what drives you and what are your goals in applying to the SiPEO lab

-        Names for at least 2 reference letter writers

                             For each reference, please include name, title, and email address.

                             References should expect to be contacted for a reference letter.

 

Please submit these documents to ai@DLR.de.  Please kindly consider that due to the high requests, we will not be able to consider incomplete applications.

 

AI4EO Guest Professors
 

In the framework of the BMBF funded German International AI Future Lab AI4EO, we have also a couple of slots free for guest professors with a pay scale from W1 to W3. Should you be working on any of the three topics 1) reasoning; 2) uncertainty and 3) Ethics in AI4EO and be interested in visiting us in Munich for 18 to 36 month, please kindly in direct contact with Prof. Dr. Xiaoxiang Zhu (xiaoxiang.zhu@dlr.de)

 

About Us:

 

The Technical University of Munich (TUM):

The Technical University of Munich (TUM) is one of Europe's top universities. It is committed to excellence in research and teaching, interdisciplinary education and the active promotion of promising young scientists. The university also forges strong links with companies and scientific institutions across the world. TUM was one of the first universities in Germany to be named a University of Excellence. Moreover, TUM regularly ranks among the best European universities in international rankings.

 

German Aerospace Center (DLR):

As a member of the Helmholtz Association of German Research Centers, the German Aerospace (DLR) employs more than 8000 people at 20 locations. The department "EO Data Science" at the Remote Sensing Technology Institute (IMF-DAS), located at the DLR in Oberpfaffenhofen is developing novel signal processing and AI algorithms to improve information retrieval from remote sensing data, in particular those from current and the next generation of Earth observation missions and deliver crucial geo-information to address social grant challenges, such as urbanization and climate change.

 

Resources and opportunities for collaboration:

Β·       Both at TUM and DLR, we are equipped with state-of-the-art computational resources such as DGX servers. In addition, we are closely collaborating with the Leibniz Supercomputing Centre (LRZ), which provides us with access to one of the most powerful supercomputing environments in Europe.

 

Β·       Helmholtz AI: The Helmholtz AI [link] platform aims to enhance the research within the Helmholtz Association with applied AI methods. For that each research area of Helmholtz operates HAICU units to work on short, medium and long term AI projects. IMF-DAS operates the local Helmholtz AI unit "MASTr: HAICU Munich @ Aeronautics, Space and Transport". It consists of a Young Investigator Group (YIG) in Earth observation and an AI Consulting Team, providing the expertise from Earth Observation, robotics, computer vision and an HPC/HPDA support unit. Currently we are looking for an enthusiastic Head of the YIG in the field of Large-Scale Data Mining in Earth Observation, and two PhD students.

 

Β·       Future AI Lab on Artificial Intelligence in Earth Observation: For the BMBF-funded Future Lab on Artificial Intelligence in Earth Observation (AI4EO), we are looking for one science manager and two PostDocs to form the backbone team of the lab starting from May 1, 2020. The Future Lab will bring together 12 highly renowned senior scientists and dozens of junior scientists from across the globe to carry out cutting-edge AI4EO research that will help to bring AI4EO to the next level. The research topics include but are not limited to reasoning, uncertainty and ethics in AI4EO.

 

 

Best regards,

Xiaoxiang Zhu

 

β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

Prof. Dr.-Ing. habil. Xiaoxiang Zhu

Direcor of the German International Future AI Lab β€žAI4EO"

Technical University of Munich (TUM) & German Aerospace Center (DLR)

Department of Aerospace and Geodesy| Willy-Messerschmitt-Str. 1 | 82024 Taufkirchen/Ottobrunn | Germany
Website: www.ai4eo.de (up soon)

Head of Department "EO Data Science"

German Aerospace Center (DLR)

Earth Observation Center | Remote Sensing Technology Institute | Department of EO Data Science | Oberpfaffenhofen | 82234 Wessling | Germany

Telephone +49 81-5328-3531 | Telefax +49 81-5328-1420 | xiaoxiang.zhu@dlr.de

 

Professor for Signal Processing in Earth Observation

Technical University of Munich (TUM)
Signal Processing in Earth Observation| Arcisstrasse 21 | 80333 Munich | Germany

Telephone +49 89-289-22659 | Telefax +49 89-289-23202 | xiaoxiang.zhu@tum.de

 

Please visit my DLR-TUM joint research group here http://www.sipeo.bgu.tum.de/


🌍
🌏
🌎
🌐
πŸ˜€
πŸ‘πŸΎ
#Globe
#Earth
#Map
#Decision Making
#Cartography
#Cartographer
#Geography
#Geographer
#GIS
#Remote_Sensing
#RemoteSensing, #GeospatialEducation, #GeoEducation, #government, #LocalGovernment, #BigData, #geospatial, #GeoOps #ChangeDetection, #LocationIntelligence, #LocationTechnology, #SmartCities, #SmartCity, #Geomatics, #Geoinformatics, #Geology, #surveying
#StaySafe, #StayHome, #StayHealthy
#Scholarship, #Scholarships, #Onlinecourse, #Onlineducation

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...