Skip to main content

PhD, PostDoc, Group Leader and Guest Professor Positions in the area of Machine Learning and Data Analytics in Earth Observation (AI4EO).


we have several open PhD, PostDoc, Group Leader and Guest Professor Positions in the area of Machine Learning and Data Analytics in Earth Observation (AI4EO).
PhD, PostDoc, and Group Leader (Wissenschaftliche/r Mitarbeiter/in)
 

Zhu lab is a joint venue of the Professorship for Signal Processing in Earth Observation at the Technical University of Munich [www.sipeo.bgu.tum.de] and the Department EO Data Science of the Remote Sensing Technology Institute of the German Aerospace Center (DLR) [https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12785/22743_read-52854/]. We develop innovative signal processing and machine learning algorithms to extract geo-information from big geospatial data, ranging from remote sensing satellite data and even social media data. As downstream applications, we provide large scale and highly accurate geo-information to address societal grand challenges, such as monitoring the global urbanization, climate research and supporting the sustainable development goals of the United Nations. Our lab offers currently several open positions for outstanding PhD Candidates, postdocs, and senior scientists at either the Technical University Munich (TUM) or the German Aerospace Center (DLR). We also have open positions for outstanding research engineers.

 

Topics of particular interest to the group include:

-        Earth Observation and Computer Vision

-        Machine Learning/Deep Learning

-        Unsupervised/weakly Supervised Learning

-        Uncertainty Analysis, Interpretation and Reasoning of Deep Neural Networks 

-        AutoML

-        Anomaly and Change Detection Methods

-        Geo-information Extraction from Social Media Data

-        Natural Language Processing

-        Large-Scale Data Mining and Knowledge Discovery in Earth Observation

-        Big Data Management

-        High-performance Computing

-        Statistical Learning, Modelling, Spatial and Temporal Analysis of Geographical Observations

-        Geo-referencing, Digitalization, Building and Maintaining Large Relational Data Bases and Geo-databases, Publishing Geo-services (i.e. Web Map Services)

 

Demonstrated hands-on experience in one or more of these areas is a requirement. Postdoc applicants should have an excellent publication record and a PhD in machine learning, computer science, statistics, remote sensing, mathematics or a related discipline. Research engineer applicants should have excellent coding skills, as well as practical skills in data science and/or deep learning, and experience with scripting and running large-scale experiments.

 

Application materials comprise:

-        CV

-        Full set of transcripts

-        Statement of purpose

-        Briefly state what drives you and what are your goals in applying to the SiPEO lab

-        Names for at least 2 reference letter writers

                             For each reference, please include name, title, and email address.

                             References should expect to be contacted for a reference letter.

 

Please submit these documents to ai@DLR.de.  Please kindly consider that due to the high requests, we will not be able to consider incomplete applications.

 

AI4EO Guest Professors
 

In the framework of the BMBF funded German International AI Future Lab AI4EO, we have also a couple of slots free for guest professors with a pay scale from W1 to W3. Should you be working on any of the three topics 1) reasoning; 2) uncertainty and 3) Ethics in AI4EO and be interested in visiting us in Munich for 18 to 36 month, please kindly in direct contact with Prof. Dr. Xiaoxiang Zhu (xiaoxiang.zhu@dlr.de)

 

About Us:

 

The Technical University of Munich (TUM):

The Technical University of Munich (TUM) is one of Europe's top universities. It is committed to excellence in research and teaching, interdisciplinary education and the active promotion of promising young scientists. The university also forges strong links with companies and scientific institutions across the world. TUM was one of the first universities in Germany to be named a University of Excellence. Moreover, TUM regularly ranks among the best European universities in international rankings.

 

German Aerospace Center (DLR):

As a member of the Helmholtz Association of German Research Centers, the German Aerospace (DLR) employs more than 8000 people at 20 locations. The department "EO Data Science" at the Remote Sensing Technology Institute (IMF-DAS), located at the DLR in Oberpfaffenhofen is developing novel signal processing and AI algorithms to improve information retrieval from remote sensing data, in particular those from current and the next generation of Earth observation missions and deliver crucial geo-information to address social grant challenges, such as urbanization and climate change.

 

Resources and opportunities for collaboration:

·       Both at TUM and DLR, we are equipped with state-of-the-art computational resources such as DGX servers. In addition, we are closely collaborating with the Leibniz Supercomputing Centre (LRZ), which provides us with access to one of the most powerful supercomputing environments in Europe.

 

·       Helmholtz AI: The Helmholtz AI [link] platform aims to enhance the research within the Helmholtz Association with applied AI methods. For that each research area of Helmholtz operates HAICU units to work on short, medium and long term AI projects. IMF-DAS operates the local Helmholtz AI unit "MASTr: HAICU Munich @ Aeronautics, Space and Transport". It consists of a Young Investigator Group (YIG) in Earth observation and an AI Consulting Team, providing the expertise from Earth Observation, robotics, computer vision and an HPC/HPDA support unit. Currently we are looking for an enthusiastic Head of the YIG in the field of Large-Scale Data Mining in Earth Observation, and two PhD students.

 

·       Future AI Lab on Artificial Intelligence in Earth Observation: For the BMBF-funded Future Lab on Artificial Intelligence in Earth Observation (AI4EO), we are looking for one science manager and two PostDocs to form the backbone team of the lab starting from May 1, 2020. The Future Lab will bring together 12 highly renowned senior scientists and dozens of junior scientists from across the globe to carry out cutting-edge AI4EO research that will help to bring AI4EO to the next level. The research topics include but are not limited to reasoning, uncertainty and ethics in AI4EO.

 

 

Best regards,

Xiaoxiang Zhu

 

——————————————————

Prof. Dr.-Ing. habil. Xiaoxiang Zhu

Direcor of the German International Future AI Lab „AI4EO"

Technical University of Munich (TUM) & German Aerospace Center (DLR)

Department of Aerospace and Geodesy| Willy-Messerschmitt-Str. 1 | 82024 Taufkirchen/Ottobrunn | Germany
Website: www.ai4eo.de (up soon)

Head of Department "EO Data Science"

German Aerospace Center (DLR)

Earth Observation Center | Remote Sensing Technology Institute | Department of EO Data Science | Oberpfaffenhofen | 82234 Wessling | Germany

Telephone +49 81-5328-3531 | Telefax +49 81-5328-1420 | xiaoxiang.zhu@dlr.de

 

Professor for Signal Processing in Earth Observation

Technical University of Munich (TUM)
Signal Processing in Earth Observation| Arcisstrasse 21 | 80333 Munich | Germany

Telephone +49 89-289-22659 | Telefax +49 89-289-23202 | xiaoxiang.zhu@tum.de

 

Please visit my DLR-TUM joint research group here http://www.sipeo.bgu.tum.de/


🌍
🌏
🌎
🌐
😀
👍🏾
#Globe
#Earth
#Map
#Decision Making
#Cartography
#Cartographer
#Geography
#Geographer
#GIS
#Remote_Sensing
#RemoteSensing, #GeospatialEducation, #GeoEducation, #government, #LocalGovernment, #BigData, #geospatial, #GeoOps #ChangeDetection, #LocationIntelligence, #LocationTechnology, #SmartCities, #SmartCity, #Geomatics, #Geoinformatics, #Geology, #surveying
#StaySafe, #StayHome, #StayHealthy
#Scholarship, #Scholarships, #Onlinecourse, #Onlineducation

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...