Skip to main content

#Landsat #NASA #USGS #Earth. Great Bahama Bank


When oceanographer Serge Andréfouet first saw a satellite image of the Great Bahama Bank, he knew the colors and contours were special. He passed the unique image to a colleague, who submitted it to NASA's Earth Observatory (EO) for an Image of the Day in 2002 (top image). Nearly eighteen years later, the image is still much appreciated. In fact, it knocked off more recent satellite imagery to win EO's Tournament Earth 2020.

"There are many nice seagrass and sand patterns worldwide, but none like this anywhere on Earth," said Andréfouet, who is now studying reefs at the Institute for Marine Research & Observation in Indonesia. "I am not surprised it is still a favorite, especially for people who see it for the first time." He said the image has been featured over the years on numerous websites, in books, and even at rave parties.

The varying colors and curves remind us of graceful strokes on a painting, but the features were sculpted by geologic processes and ocean creatures. The Great Bahama Bank was dry land during past ice ages, but it slowly submerged as sea levels rose. Today, the bank is covered by water, though it can be as shallow as two meters (seven feet) deep in places. The bank itself is composed of white carbonate sand and limestone, mainly from the skeletal fragments of corals. The Florida peninsula was built from similar deposits.

Andréfouet's image (top) shows a small section of the bank as it appeared on January 17, 2001, and was acquired by the Enhanced Thematic Mapper Plus (ETM+) on the Landsat 7 satellite (using bands 1-2-3). At that time the instrument's blue channel (band 1) helped distinguish shallow water features better than previous satellite mission.

The wave-shaped ripples in the images are sand on the seafloor. The curves follow the slopes of underwater dunes, which were probably shaped by a fairly strong current near the sea bottom. Sand and seagrass are present in different quantities and at different depths, which gives the image a range of blues and greens. The area appeared largely the same when Landsat 8 passed over on February 15, 2020.

The shallow bank quickly drops off into a deep, dark region known as the "Tongue of the Ocean." Diving about 2,000 meters (6,500 feet) deep, the Tongue of the Ocean is home to more than 160 fish and coral species. It lies adjacent to the Andros Island, the largest in the Bahamas and one of the largest fringing reefs in the world. The image above was acquired on April 4, 2020, by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite.

At the time of the 2001 image, researchers did not have a good understanding of the location and distribution of reef systems across the world. Global maps of coral reefs had not changed much since the 19th Century. So researchers turned to satellites for a better view. Andréfouet's image was collected as part of the NASA-funded Millennium Coral Reef Mapping Project, which aimed to image and map coral reefs worldwide. The project gathered more than 1,700 images with Landsat 7, the first Landsat to take images over coastal waters and the open ocean.

Today, many satellites and research programs continue to map and monitor coral reef systems, and marine scientists have a better idea of where the reefs are and how they are faring. Researchers now use reef images and maps in tandem with sea surface temperature data to identify areas vulnerable to coral bleaching.

NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey, and MODIS data from NASA EOSDIS/LANCE and GIBS/Worldview.2002 imagery courtesy Serge Andrefouet, University of South Florida. Story by Kasha Patel.


#Landsat #NASA #USGS #Earth


....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...