Skip to main content

A New Lake—Water Not Lava—On Kilauea. #Landsat #NASA #USGS #Earth

A New Lake—Water Not Lava—On Kilauea

Between 2010 and 2018, a large lava lake bubbled and spattered within Kilauea's summit caldera. Then in May 2018, as part of a broader eruption that poured lava from fissures to the east, the lake swiftly drained and part of the caldera floor collapsed. This left a hole nearly as deep as One World Trade Center.

But that was not all Pele had in store. For about a year, the much-deeper and wider Halema'uma'u crater was relatively quiet. But in July 2019, helicopter pilots began to notice water pooling into a pond in the lowest part of the crater. Water levels have risen steadily ever since. Today, the lake—now with a rusty brown sheen on its surface due to chemical reactions taking place in the water—has an area larger than five football fields combined and a maximum depth of roughly 30 meters (100 feet).

The sequence of satellite images above shows Halema'uma'u crater before the lava lake drained (left), after the caldera floor had collapsed (middle), and after water pooled on the crater floor for nine months (right). The Operational Land Imager (OLI) on Landsat 8 acquired all three natural-color images.

When the lava lake was present, it appeared in the southeast part of Halema'uma'u, though a crust of partially solidified lava on its surface made it appear gray from above. (The circular light gray area with a thin plume of volcanic emissions rising from it marks the location of the lake.) After the caldera collapse, the terrain surrounding the lake changed dramatically, including the formation of a new 140-meter cliff (thin dark line) north of the crater. In the final image, the pond on the summit appears small from Landsat's perspective (30 meters per pixel). The photograph below, taken on April 21, offers a better sense of scale.

The explanation for the new pond is simple. "We have a drill hole a little more than one kilometer south of the crater where we measure the level of the water table," explained Don Swanson, a volcanologist at the U.S. Geological Survey's Hawaiian Volcano Observatory. "We know that the crater floor dropped a little more than 70 meters below the water table in 2018. Any time that you punch a hole below the level of the water table, water is eventually going to come in and fill that hole."

Explaining what the new pond means for the volcano is where the story gets more complicated and interesting. One of the key factors that controls explosive volcanic eruptions is how much water and other gases get caught up within the magma. If magma has a lot of dissolved gases and steam, pressure builds and explosive eruptions can result. If not, lava tends to flow gently from fissures in the ground—as has been the case at Kilauea for the past 200 years.

Calm eruptions are the exception, not the norm. Over the past 2,500 years, Kilauea has erupted explosively about 60 percent of the time, noted Swanson. "We have been misled by how calm it has been. If this was 1720 rather than 2020, then we would we would not have seen a lava flow for more than 200 years, and we may have thought Kilauea was always an explosive volcano."

There are two scenarios that could lead to an explosive eruption. "In one case, magma could rise quickly up the conduit and intersect with the lake," said Swanson. "In the second, the crater floor could collapse and drop all of the water down to a zone where it would be quickly heated into steam."

But that does not mean the next eruption will be explosive. "The next eruption could happen slowly and the water could evaporate," he said. "We do not want to be alarmist, but we also need to point out to the public that there is an increasing possibility of explosive eruptions at Kilauea."

One thing is quite certain: geologists will be closely monitoring Kilauea and its new lake with every tool available, including seismometers, thermal cameras, drones, helicopter surveys, and satellites. "Is the volcano in the process of reverting back to an explosive period that may last for centuries?" said Swanson. "Or is this just a little blip, and we are going to return to quiet lava flows like we had during the 19th and 20th centuries? Only time will tell."

NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey. USGS photo by Matthew Patrick. Story by Adam Voiland.


#Landsat #NASA #USGS #Earth


....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...