Skip to main content

A New Lake—Water Not Lava—On Kilauea. #Landsat #NASA #USGS #Earth

A New Lake—Water Not Lava—On Kilauea

Between 2010 and 2018, a large lava lake bubbled and spattered within Kilauea's summit caldera. Then in May 2018, as part of a broader eruption that poured lava from fissures to the east, the lake swiftly drained and part of the caldera floor collapsed. This left a hole nearly as deep as One World Trade Center.

But that was not all Pele had in store. For about a year, the much-deeper and wider Halema'uma'u crater was relatively quiet. But in July 2019, helicopter pilots began to notice water pooling into a pond in the lowest part of the crater. Water levels have risen steadily ever since. Today, the lake—now with a rusty brown sheen on its surface due to chemical reactions taking place in the water—has an area larger than five football fields combined and a maximum depth of roughly 30 meters (100 feet).

The sequence of satellite images above shows Halema'uma'u crater before the lava lake drained (left), after the caldera floor had collapsed (middle), and after water pooled on the crater floor for nine months (right). The Operational Land Imager (OLI) on Landsat 8 acquired all three natural-color images.

When the lava lake was present, it appeared in the southeast part of Halema'uma'u, though a crust of partially solidified lava on its surface made it appear gray from above. (The circular light gray area with a thin plume of volcanic emissions rising from it marks the location of the lake.) After the caldera collapse, the terrain surrounding the lake changed dramatically, including the formation of a new 140-meter cliff (thin dark line) north of the crater. In the final image, the pond on the summit appears small from Landsat's perspective (30 meters per pixel). The photograph below, taken on April 21, offers a better sense of scale.

The explanation for the new pond is simple. "We have a drill hole a little more than one kilometer south of the crater where we measure the level of the water table," explained Don Swanson, a volcanologist at the U.S. Geological Survey's Hawaiian Volcano Observatory. "We know that the crater floor dropped a little more than 70 meters below the water table in 2018. Any time that you punch a hole below the level of the water table, water is eventually going to come in and fill that hole."

Explaining what the new pond means for the volcano is where the story gets more complicated and interesting. One of the key factors that controls explosive volcanic eruptions is how much water and other gases get caught up within the magma. If magma has a lot of dissolved gases and steam, pressure builds and explosive eruptions can result. If not, lava tends to flow gently from fissures in the ground—as has been the case at Kilauea for the past 200 years.

Calm eruptions are the exception, not the norm. Over the past 2,500 years, Kilauea has erupted explosively about 60 percent of the time, noted Swanson. "We have been misled by how calm it has been. If this was 1720 rather than 2020, then we would we would not have seen a lava flow for more than 200 years, and we may have thought Kilauea was always an explosive volcano."

There are two scenarios that could lead to an explosive eruption. "In one case, magma could rise quickly up the conduit and intersect with the lake," said Swanson. "In the second, the crater floor could collapse and drop all of the water down to a zone where it would be quickly heated into steam."

But that does not mean the next eruption will be explosive. "The next eruption could happen slowly and the water could evaporate," he said. "We do not want to be alarmist, but we also need to point out to the public that there is an increasing possibility of explosive eruptions at Kilauea."

One thing is quite certain: geologists will be closely monitoring Kilauea and its new lake with every tool available, including seismometers, thermal cameras, drones, helicopter surveys, and satellites. "Is the volcano in the process of reverting back to an explosive period that may last for centuries?" said Swanson. "Or is this just a little blip, and we are going to return to quiet lava flows like we had during the 19th and 20th centuries? Only time will tell."

NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey. USGS photo by Matthew Patrick. Story by Adam Voiland.


#Landsat #NASA #USGS #Earth


....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong ...

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's...

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to...

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati...

Forset management and water conservation

Forest management and water conservation are closely intertwined concepts, as forests play a crucial role in maintaining water resources. Here's an explanation of their connection: 1. Water Regulation: Forests act as natural sponges, absorbing rainwater and releasing it gradually. Trees help regulate water flow, preventing rapid runoff and reducing the risk of floods. 2. Groundwater Recharge: Trees contribute to groundwater recharge by allowing rainwater to percolate into the soil. This replenishes underground aquifers, which are important sources of freshwater. 3. Erosion Control: Forests provide vegetation cover that protects soil from erosion caused by rainfall. This, in turn, helps maintain the quality of water bodies by preventing sedimentation. 4. Streamflow Maintenance: Healthy forests ensure consistent streamflow. Trees release water through transpiration, influencing local and regional precipitation patterns and sustaining rivers and streams. 5. Biodiversity and Water Qual...