Skip to main content

A New Lake—Water Not Lava—On Kilauea. #Landsat #NASA #USGS #Earth

A New Lake—Water Not Lava—On Kilauea

Between 2010 and 2018, a large lava lake bubbled and spattered within Kilauea's summit caldera. Then in May 2018, as part of a broader eruption that poured lava from fissures to the east, the lake swiftly drained and part of the caldera floor collapsed. This left a hole nearly as deep as One World Trade Center.

But that was not all Pele had in store. For about a year, the much-deeper and wider Halema'uma'u crater was relatively quiet. But in July 2019, helicopter pilots began to notice water pooling into a pond in the lowest part of the crater. Water levels have risen steadily ever since. Today, the lake—now with a rusty brown sheen on its surface due to chemical reactions taking place in the water—has an area larger than five football fields combined and a maximum depth of roughly 30 meters (100 feet).

The sequence of satellite images above shows Halema'uma'u crater before the lava lake drained (left), after the caldera floor had collapsed (middle), and after water pooled on the crater floor for nine months (right). The Operational Land Imager (OLI) on Landsat 8 acquired all three natural-color images.

When the lava lake was present, it appeared in the southeast part of Halema'uma'u, though a crust of partially solidified lava on its surface made it appear gray from above. (The circular light gray area with a thin plume of volcanic emissions rising from it marks the location of the lake.) After the caldera collapse, the terrain surrounding the lake changed dramatically, including the formation of a new 140-meter cliff (thin dark line) north of the crater. In the final image, the pond on the summit appears small from Landsat's perspective (30 meters per pixel). The photograph below, taken on April 21, offers a better sense of scale.

The explanation for the new pond is simple. "We have a drill hole a little more than one kilometer south of the crater where we measure the level of the water table," explained Don Swanson, a volcanologist at the U.S. Geological Survey's Hawaiian Volcano Observatory. "We know that the crater floor dropped a little more than 70 meters below the water table in 2018. Any time that you punch a hole below the level of the water table, water is eventually going to come in and fill that hole."

Explaining what the new pond means for the volcano is where the story gets more complicated and interesting. One of the key factors that controls explosive volcanic eruptions is how much water and other gases get caught up within the magma. If magma has a lot of dissolved gases and steam, pressure builds and explosive eruptions can result. If not, lava tends to flow gently from fissures in the ground—as has been the case at Kilauea for the past 200 years.

Calm eruptions are the exception, not the norm. Over the past 2,500 years, Kilauea has erupted explosively about 60 percent of the time, noted Swanson. "We have been misled by how calm it has been. If this was 1720 rather than 2020, then we would we would not have seen a lava flow for more than 200 years, and we may have thought Kilauea was always an explosive volcano."

There are two scenarios that could lead to an explosive eruption. "In one case, magma could rise quickly up the conduit and intersect with the lake," said Swanson. "In the second, the crater floor could collapse and drop all of the water down to a zone where it would be quickly heated into steam."

But that does not mean the next eruption will be explosive. "The next eruption could happen slowly and the water could evaporate," he said. "We do not want to be alarmist, but we also need to point out to the public that there is an increasing possibility of explosive eruptions at Kilauea."

One thing is quite certain: geologists will be closely monitoring Kilauea and its new lake with every tool available, including seismometers, thermal cameras, drones, helicopter surveys, and satellites. "Is the volcano in the process of reverting back to an explosive period that may last for centuries?" said Swanson. "Or is this just a little blip, and we are going to return to quiet lava flows like we had during the 19th and 20th centuries? Only time will tell."

NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey. USGS photo by Matthew Patrick. Story by Adam Voiland.


#Landsat #NASA #USGS #Earth


....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...