Skip to main content

#Wilson_cycle The Wilson cycle. J. Tuzo Wilson

#Wilson_cycle

The cyclical opening and closing of ocean basins caused by movement of the Earth's plates. The Wilson cycle begins with a rising plume of magma and the thinning of the overlying crust. As the crust continues to thin due to extensional tectonic forces, an ocean basin forms and sediments accumulate along its margins. Subsequently subduction is initiated on one of the ocean basin's margins and the ocean basin closes up. When the crust begins to thin again, another cycle begins. The Wilson cycle is named after the Canadian geophysicist J. Tuzo Wilson (1908-1993).



Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Water Act 1974

The Water (Prevention and Control of Pollution) Act of 1974 is a significant piece of legislation in India aimed at preventing and controlling water pollution. Here are some key facts about the Act: 1. Objective: The primary objective is to prevent and control water pollution and maintain or restore the wholesomeness of water in the country. 2. Establishment of Boards:    - Central Pollution Control Board (CPCB): The Act mandates the establishment of the CPCB to oversee and coordinate activities across the nation and advise the Central Government.    - State Pollution Control Boards (SPCBs): Each state is required to establish its own SPCB to plan comprehensive programs for the prevention and control of pollution. 3. Powers and Functions:    - The Boards have the authority to inspect any sewage or trade effluents, works, and plants for the treatment of sewage and trade effluents.    - They can establish standards for the discharge of pollutants into water bodies and ensure adherence to

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions: 1. Vulnerability: Definition: The susceptibility of individuals, communities, or assets to harm from a disaster. Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability. Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts. 2. Exposure: Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas. Factors: Population density, land use patterns, and infrastructure development influence exposure. Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks. 3. Capacity: Definition: A community's ability to prepare for, respond to, and recover from disasters. Factors: Strong

Community Resilience and Disaster Preparedness

Community resilience is the ability of a community to prepare for, respond to, adapt to, and recover from disasters. It is a critical factor in minimizing the impact of natural hazards and other adverse events. A resilient community can protect lives, livelihoods, and infrastructure, and recover more quickly from disasters. Key Strategies for Building Community Resilience: Vulnerability and Risk Assessment: Identify potential hazards and vulnerable populations. Develop targeted strategies to address specific risks. Community Engagement: Mobilize residents, organizations, and stakeholders. Foster partnerships to leverage resources and expertise. Empower communities to participate in decision-making and implementation. Resilience Planning: Develop comprehensive plans for prevention, preparedness, response, and recovery. Establish clear roles, responsibilities, and communication protocols. Allocate resources effectively to support resilience initiatives. Monitoring and

Environment Management DRR

Environmental management plays a crucial role in disaster risk reduction (DRR) by harnessing the power of natural ecosystems to prevent and mitigate the impacts of disasters. By protecting and restoring these ecosystems, we can strengthen community resilience and promote sustainable development. Interconnections Between Environmental Management and DRR: Ecosystem-Based Disaster Risk Reduction (Eco-DRR): Natural Barriers: Ecosystems like forests, wetlands, and coral reefs act as natural barriers, reducing the impact of hazards like floods, landslides, and storm surges. Resilience Building: Healthy ecosystems enhance community resilience by absorbing excess rainfall, preventing erosion, and mitigating the effects of climate change. Environmental Considerations in Disaster Planning: Sustainable Practices: Incorporating environmental considerations into disaster planning helps prevent further environmental degradation, which can exacerbate disaster impacts. Resource Conservati

Overview of Disasters in India

India's Vulnerability to Natural Disasters India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy. Major Natural Disasters Affecting India: Earthquakes: Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity. Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation. Tsunamis: Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami. Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property. Floods: Monsoon Influence: India's