Skip to main content

GIS: Real World and Representations - Modeling and Maps


Geographic Information Systems (GIS) serve as a bridge between the real world and digital representations of geographic phenomena. These representations allow users to store, analyze, and visualize spatial data for informed decision-making. Two key aspects of GIS in this context are modeling and maps, both of which are used to represent real-world geographic features and phenomena in a structured, analyzable format.

Let's delve into these concepts, terminologies, and examples in detail.


  • 1. Real World and Representations in GIS

    • Concept: The real world comprises physical, tangible phenomena, such as landforms, rivers, cities, and infrastructure, as well as more abstract elements like weather patterns, population densities, and traffic flow. GIS allows us to represent these real-world phenomena digitally, enabling spatial analysis, decision-making, and visualization.

      The representation of the real world in GIS is achieved through various models and maps, which simplify and abstract the complexities of the physical world into digital formats that can be easily analyzed, queried, and visualized.

    • Terminologies:

      • Geospatial Data: Data that is associated with a specific location on Earth, often represented in terms of coordinates (latitude, longitude) or spatial features (e.g., roads, buildings).
      • Representation: The digital model of real-world geographic phenomena in GIS, which can take the form of maps, databases, or spatial models.
    • Example:

      • Real World: A city with streets, parks, rivers, and buildings.
      • Representation: The city's data might be stored in a GIS as point data (for buildings), line data (for roads), and polygon data (for parks and land use areas). These representations allow the GIS to analyze and visualize patterns like traffic congestion, flood risks, or land use planning.

  • 2. Modeling in GIS

    • Concept: Modeling in GIS refers to the process of creating digital representations of geographic phenomena. Models are used to abstract complex real-world features into simplified, structured formats that can be analyzed and manipulated. GIS models are essential for representing both discrete objects (e.g., buildings, roads) and continuous phenomena (e.g., temperature, elevation).

      There are two primary types of models used in GIS:

      1. Vector Models
      2. Raster Models

      These models are fundamental in representing real-world data in a way that facilitates spatial analysis and decision-making.

    • Terminologies:

      • Vector Model: A GIS model that represents geographic features as points, lines, and polygons. It is ideal for representing discrete objects or features with well-defined boundaries, such as roads, buildings, or rivers.
        • Point: A single location in space, represented by a set of coordinates (e.g., a well, a city).
        • Line: A series of connected points representing linear features (e.g., roads, rivers).
        • Polygon: A closed shape that represents area-based features (e.g., parks, land parcels, lakes).
      • Raster Model: A GIS model that represents the world as a grid of cells or pixels, where each cell contains a value representing a specific attribute. It is suitable for representing continuous phenomena, such as elevation, temperature, or vegetation.
        • Pixel: A cell in a raster grid that contains a value (e.g., elevation, temperature, land cover type).
      • Topological Model: A model that represents spatial relationships between geographic features, such as adjacency, connectivity, and containment. Topology is crucial for understanding spatial relationships in GIS, particularly in vector data.
    • Example:

      • Vector Model Example: A city map might be represented using vector data, where:
        • Points represent locations of bus stops or fire stations.
        • Lines represent roads, highways, and rivers.
        • Polygons represent land use areas such as residential zones, parks, or commercial areas.
      • Raster Model Example: A digital elevation model (DEM) is a raster model used to represent elevation data across a landscape. Each pixel in the DEM grid holds a value corresponding to the elevation of that location, which can be used for terrain analysis, such as flood risk assessment or watershed modeling.

  • 3. Maps in GIS

    • Concept: In GIS, maps are visual representations of geographic data that help to communicate information about spatial patterns, relationships, and distributions. Maps in GIS are more dynamic and interactive than traditional static maps, as they can display real-time data, multiple layers of information, and allow for spatial analysis.

      Maps in GIS are often composed of layers of data, each representing a different geographic feature or phenomenon. These layers can be combined to create a comprehensive map that shows various aspects of the real world, such as land use, roads, weather patterns, or population density.

    • Terminologies:

      • Map Layer: A single thematic layer of data in a GIS map. For example, one layer might show roads, while another layer shows water bodies, and another layer shows population density.
      • Thematic Map: A type of map that emphasizes a specific theme or subject, such as population density, land use, vegetation types, or climate zones.
      • Cartographic Representation: The way in which geographic data is visually represented on a map, including aspects like colors, symbols, and scale.
    • Example:

      • Thematic Map: A GIS-based land use map may show areas of a city dedicated to residential, commercial, industrial, and recreational purposes. Different colors may represent different land use types (e.g., blue for water, yellow for residential, green for parks).
      • Topographic Map: A GIS map could represent the elevation of a region using contour lines or a color gradient (e.g., dark green for low elevation and brown for higher elevation). This type of map is useful for analyzing terrain and planning infrastructure.
      • Flood Risk Map: A GIS map could combine layers of land elevation, rainfall data, and river flow to create a flood risk map that highlights areas most likely to be affected by floods. Maps in GIS are interactive, allowing users to zoom, pan, and query data. For example, a user could click on a specific building in a map to get information about its type, height, and surrounding environment.

  • 4. Connecting Modeling and Maps

    The relationship between modeling and maps in GIS is crucial. Maps are visual representations of models, which are digital representations of real-world phenomena. While models abstract and simplify geographic data, maps are the output or visualization of that data, often representing multiple models or layers of information simultaneously.

    • Terminologies:
      • Layering: The process of combining multiple data layers (representing different models or phenomena) to create a composite map. Each layer is typically a different representation of geographic data, such as roads, land use, and elevation.
      • Interactive Maps: Digital maps that allow users to interact with data, zoom in on specific features, or query information about particular geographic elements.
    • Example:
      • Urban Planning Map: A GIS map used for urban planning might combine several layers: one showing road networks (vector data), another showing zoning districts (polygon data), and another showing flood-prone areas (raster data). This composite map would help urban planners make informed decisions about where to build new infrastructure or which areas need flood mitigation measures.

Fyugp note 

GIS second semester 


Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...