Skip to main content

Violent Puffs from Krakatau. #Landsat #NASA #USGS #Earth

Violent Puffs from Krakatau

Anak Krakatau maintains a mighty and sometimes menacing presence in the Sunda Strait between Java and Sumatra, with more than 50 known periods of eruptions in almost 2,000 years. The Indonesian volcano's latest burst of activity has produced numerous plumes and lava flows in 2020, including some relatively small but notable events in April.

On April 13, 2020, the Operational Land Imager (OLI) on Landsat 8 acquired this natural-color image (OLI bands 4-3-2) of the volcano as a plume towered over the peak. The natural-color image is overlaid with the infrared signature detected by OLI of what is possibly molten rock.

"The location of the plume suggests that it is volcanic in origin," said Verity Flower, a USRA volcanologist based at NASA's Goddard Space Flight Center. Flower and colleagues use the Multi-angle Imaging Spectroradiometer (MISR) sensor on NASA's Terra satellite to measure the height of volcanic plumes and to observe the shape, size, and light-absorbing properties of the particles within plumes. "On April 12, I saw a similar feature in one of the angular MISR images with a plume-like feature above the volcano summit."

Based on the color of the plume in the image above, Flower thinks it is likely composed of mostly water vapor and gas. These small, reflective particles make a plume appear white. Conversely, larger and darker ash particles tend to look gray or brown in natural-color images.

Note the darker part of the plume extending toward the north: it appears lower in altitude than the bright, billowy part of the plume directly over the peak. "It is possible the heavier ash particles emitted are staying lower in the atmosphere and are being transported to the north by near-surface winds," Flower said. "In contrast, any water and gases within the plume, which are lighter, would be transported higher and would condense rapidly in the atmosphere."

Indonesia's Center of Volcanology and Geological Hazard Mitigation (PVMBG) reported that incandescent rock had erupted onto the volcano's surface with "insignificant intensity" in the days prior to this image.

"Anak Krakatau volcano has displayed these small eruptive bursts periodically through the last few years," Flower said. "However, it can also display more destructive activity such as tsunami-triggering eruptions."

According to the April 11 statement from PVMBG, the hazards from the volcano's recent activity included fountains of lava, lava flows, and ash rain within a radius of 2 kilometers around the crater. Thinner ash rain could extend even farther from the depending on the strength of winds. Still, the alert level remained at two on a scale of one (low) to four (high).

NASA Earth Observatory image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey. Story by Kathryn Hansen.

Read More at:


and/or


#Landsat #NASA #USGS #Earth


....

Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud