Skip to main content

Landsat #NASA #USGS #Earth Taking Temperatures from ISS

Taking Temperatures from ISS

When remote sensing scientists observe Earth, they often look for heat signatures. Fires, volcanoes, ice, water, and even sunlit or shaded landscapes emit and reflect heat and light—energy—in ways that make them stand out from their surroundings. NASA scientists recently used a new sensor to read some of those signatures more clearly.

Through nearly a year of testing on the International Space Station (ISS), the experimental Compact Thermal Imager (CTI) collected more than 15 million images of Earth, and the results were compelling. Researchers were impressed by the breadth and quality of the imagery CTI collected in 10 months on the ISS, particularly of fires.

For instance, CTI captured several images of the unusually severe fires in Australia that burned for four months in 2019-20. With its 80-meter (260 foot) per pixel resolution, CTI was able to detect the shape and location of fire fronts and how far they were from settled areas—information that is critically important to first responders.

For the past two decades, scientists have generally relied upon coarse resolution (375–1000 m) thermal data from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors to monitor fire activity from above. During its flight test, CTI made observations of fires with 20 times more detail than VIIRS and 190 times more detail than MODIS.

The images above highlight the difference. Both images show CTI's view of large fires burning in the Gondwana Rainforests of New South Wales on November 1, 2019. The right image also includes the VIIRS fire detections (red diamonds) of the same area that day. The data were overlaid on a natural-color image acquired by the Operational Land Imager (OLI) on Landsat 8.

The image below, acquired by the European Space Agency's Sentinel-2 spacecraft on November 1, shows a more detailed view of one of the fire clusters, along with the CTI data.

"CTI's deployment on the space station was primarily a test of how well the hardware would perform in space. It was not initially designed as a science mission," explained Doug Morton, chief of the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center. "Nonetheless, CTI data proved scientifically useful as we monitored several high-profile fire outbreaks this past summer."

One aspect of CTI's mission that was of particular interest to Morton was the timing of the images. MODIS and VIIRS have polar orbits and make observations over a given area at the same time each day (roughly 10:30 a.m. and 1:30 p.m.). Imagers on the ISS provide more variety and less consistency in timing, as the orbit of the International Space Station is more variable, as is the lighting and angles as it passes over different locations.

"We ended up getting these amazing images of fires at times of the day when we don't usually get them," said Morton. Fire researchers are eager to have more views of fires around dawn and dusk, which are sometimes missed by MODIS and VIIRS. "It was a reminder of how much critical science we could do if we had a whole fleet of sensors like CTI giving us such detailed measurements multiple times a day."

CTI was designed at NASA's Goddard Space Flight Center and installed on the ISS in 2019 as part of the Robotic Refueling Mission 3. It used an advanced detector called a strained layer superlattice (SLS), an improved version of the detector technology that is part of the Thermal Infrared Sensor (TIRS) of Landsat 8 and 9.

"The new SLS technology operates at a much warmer temperature with greater sensitivity and has a broader spectral response than the TIRS technology, resulting in a smaller and less costly instrument to design and build," said Murzy Jhabvala, principal investigator for CTI. "SLS has proved itself. This technology is now a viable candidate for the future Landsat 10 and a variety of other lunar, planetary, and asteroid missions."

NASA Earth Observatory images by Lauren Dauphin, using Landsat data from the U.S. Geological Survey, VIIRS data from NASA EOSDIS/LANCE and GIBS/Worldview and the Suomi National Polar-orbiting Partnership, topographic data from the Shuttle Radar Topography Mission (SRTM), and modified Copernicus Sentinel data (2018) processed by the European Space Agency. CTI data courtesy of the CTI team at NASA's Goddard Space Flight Center. The sensor was developed with QmagiQ and funded by the Earth Science Technology Office (ESTO). Story by Adam Voiland.

Read More at:


and/or


#Landsat #NASA #USGS #Earth

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Geology and Tectonic. Indian Shield

1. Ch (Chattisgarh Basin): Chattisgarh Basin is a geological region in central India known for its sedimentary rock formations. It's important for its mineral resources, including coal and iron ore. 2. CIS (Central Indian Shear Zone): CIS is a tectonic boundary in central India where the Indian Plate interacts with the Eurasian Plate. It's characterized by significant faulting and seismic activity. 3. GR (Godavari Rift): The Godavari Rift is a geological feature associated with the rifting and splitting of the Indian Plate. It's located in the Godavari River basin in southeastern India. 4. M (Madras Block): The Madras Block is a stable continental block in southern India. It's part of the Indian Plate and is not associated with active tectonic processes. 5. Mk (Malanjkhand): Malanjkhand is known for its copper deposits and is one of the largest copper mines in India. 6. MR (Mahanadi Rift): The Mahanadi Rift is a geological feature related to the rifting of the Indian Pl...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Neighbourhood Operations

 Neighbourhood Operations in GIS? In GIS and raster data , neighbourhood operations look at a group of nearby pixels (not just one) to understand or change a pixel's value. Think of it like checking what's around a house before deciding what color to paint it! Why "Neighbourhood"? Each pixel has " neighbours " (just like how your house has nearby houses). Neighbourhood operations check these nearby pixels and do some calculation to get a new value. 1. Aggregations (Summarizing Nearby Values) Aggregation means combining values of several pixels into one. We do this to: Find the average of surrounding pixels Find the minimum or maximum value Smooth the map (make it less rough) 🧒🏻 Example: Imagine checking the test scores of 9 students sitting around you and finding the average score . That's aggregation!  2. Filtering Techniques Filtering is used to improve or highlight features in a raster image, just like f...

Morpho-Tectonic Framework of India

The MorphoTectonic Framework of India refers to the combined study of the country's landforms (morphology) and its geological tectonic features. This framework provides insights into how geological forces have shaped India's topography over millions of years. Here's a breakdown of this concept: 1. Morphology: This aspect focuses on the physical features and landforms of India. It includes the study of mountains, plateaus, plains, valleys, rivers, and other surface features. For example, the Himalayas, Western Ghats, IndoGangetic Plains, and Deccan Plateau are prominent morphological features of India. 2. Tectonics: Tectonics deals with the movement and deformation of the Earth's lithosphere (the outermost rigid layer of the Earth). In the case of India, it primarily involves the interactions of the Indian Plate with neighboring tectonic plates. India is situated at the convergence of several major tectonic boundaries:     Collision with the Eurasian Plate: The most sign...

India – Geographic Location – Spatial Significance

India's geographic location holds immense spatial significance due to its position on the world map. Here's an explanation of India's geographic location and its spatial significance: Geographic Location: India is a vast South Asian country located on the Indian subcontinent. Its geographic coordinates are approximately between 8°4'N and 37°6'N latitude and 68°7'E and 97°25'E longitude. It is surrounded by several important bodies of water: - To the west, it has a coastline along the Arabian Sea. - To the east, it is bordered by the Bay of Bengal. - To the south, it faces the Indian Ocean. - To the north, India shares its land borders with Pakistan, China, Nepal, Bhutan, Bangladesh, and Myanmar. Spatial Significance: 1. Strategic Location: India's location places it at the crossroads of South Asia and the Indian Ocean region. This strategic position has made it historically important for trade, diplomacy, and geopolitics. 2. Trade and Commerce: India...