Skip to main content

Landsat #NASA #USGS #Earth Taking Temperatures from ISS

Taking Temperatures from ISS

When remote sensing scientists observe Earth, they often look for heat signatures. Fires, volcanoes, ice, water, and even sunlit or shaded landscapes emit and reflect heat and light—energy—in ways that make them stand out from their surroundings. NASA scientists recently used a new sensor to read some of those signatures more clearly.

Through nearly a year of testing on the International Space Station (ISS), the experimental Compact Thermal Imager (CTI) collected more than 15 million images of Earth, and the results were compelling. Researchers were impressed by the breadth and quality of the imagery CTI collected in 10 months on the ISS, particularly of fires.

For instance, CTI captured several images of the unusually severe fires in Australia that burned for four months in 2019-20. With its 80-meter (260 foot) per pixel resolution, CTI was able to detect the shape and location of fire fronts and how far they were from settled areas—information that is critically important to first responders.

For the past two decades, scientists have generally relied upon coarse resolution (375–1000 m) thermal data from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors to monitor fire activity from above. During its flight test, CTI made observations of fires with 20 times more detail than VIIRS and 190 times more detail than MODIS.

The images above highlight the difference. Both images show CTI's view of large fires burning in the Gondwana Rainforests of New South Wales on November 1, 2019. The right image also includes the VIIRS fire detections (red diamonds) of the same area that day. The data were overlaid on a natural-color image acquired by the Operational Land Imager (OLI) on Landsat 8.

The image below, acquired by the European Space Agency's Sentinel-2 spacecraft on November 1, shows a more detailed view of one of the fire clusters, along with the CTI data.

"CTI's deployment on the space station was primarily a test of how well the hardware would perform in space. It was not initially designed as a science mission," explained Doug Morton, chief of the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center. "Nonetheless, CTI data proved scientifically useful as we monitored several high-profile fire outbreaks this past summer."

One aspect of CTI's mission that was of particular interest to Morton was the timing of the images. MODIS and VIIRS have polar orbits and make observations over a given area at the same time each day (roughly 10:30 a.m. and 1:30 p.m.). Imagers on the ISS provide more variety and less consistency in timing, as the orbit of the International Space Station is more variable, as is the lighting and angles as it passes over different locations.

"We ended up getting these amazing images of fires at times of the day when we don't usually get them," said Morton. Fire researchers are eager to have more views of fires around dawn and dusk, which are sometimes missed by MODIS and VIIRS. "It was a reminder of how much critical science we could do if we had a whole fleet of sensors like CTI giving us such detailed measurements multiple times a day."

CTI was designed at NASA's Goddard Space Flight Center and installed on the ISS in 2019 as part of the Robotic Refueling Mission 3. It used an advanced detector called a strained layer superlattice (SLS), an improved version of the detector technology that is part of the Thermal Infrared Sensor (TIRS) of Landsat 8 and 9.

"The new SLS technology operates at a much warmer temperature with greater sensitivity and has a broader spectral response than the TIRS technology, resulting in a smaller and less costly instrument to design and build," said Murzy Jhabvala, principal investigator for CTI. "SLS has proved itself. This technology is now a viable candidate for the future Landsat 10 and a variety of other lunar, planetary, and asteroid missions."

NASA Earth Observatory images by Lauren Dauphin, using Landsat data from the U.S. Geological Survey, VIIRS data from NASA EOSDIS/LANCE and GIBS/Worldview and the Suomi National Polar-orbiting Partnership, topographic data from the Shuttle Radar Topography Mission (SRTM), and modified Copernicus Sentinel data (2018) processed by the European Space Agency. CTI data courtesy of the CTI team at NASA's Goddard Space Flight Center. The sensor was developed with QmagiQ and funded by the Earth Science Technology Office (ESTO). Story by Adam Voiland.

Read More at:


and/or


#Landsat #NASA #USGS #Earth

....


Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...