Skip to main content

IIT Delhi-University of Queensland International Joint PhD with Scholarships and fellowship



IIT Delhi-University of Queensland International Joint PhD in Science, Engineering, Management, Humanities: Apply by March 22
Start your future on Coursera today.
     
BY: USHA | 24 Feb 2020 11:17 AM

 
The University of Queensland, Australia and IIT Delhi have created a joint research programme titled UQ-IITD Academy of Research (UQIDAR).

UQIDAR will attract the best global talent, including elite students, academics, researchers and scientists to work on goal-directed, cross-disciplinary grand challenges that are of interest to Australia, India and the global community and that also align with The University of Queensland (UQ) and Indian Institute of Technology (IITD) research strengths. UQIDAR will enable UQ and IITD to enrol the brightest and most talented students in a joint PhD with joint supervision from both institutions. It is anticipated that the majority of students (i-students) will be recruited into the joint-PhD program in Delhi, and there will be a small cohort of Australia-anchored scholars (q-students).

i-students will spend 3 years in India and a minimum of one year in Australia while
q-students will spend 3 years in Australia and one year in India.
It is expected that candidature will be a maximum of 4 years in all disciplines, depending on a students progress, with scholarships offered for a maximum of 4 years. Both i-students and q-students will be expected to undertake some coursework. Upon successful completion of the program, students will be offered a PhD degree from both UQ and IITD.

Students of the Academy will
Gain a joint global qualification from two institutions (UQ and IITD) in 4 years;
Receive a generous scholarship;
Be in a position to take advantage of world-class facilities and resources and gain exposure to a new research ecosystem, network and environment; and
Benefit from global expertise via dual supervision between UQ and IITD as well as possible industry input.
The collaboration will involve strong industry linkages whereby industry will be involved in supporting PhD students. Industry supported PhD scholars will work on challenging research problems posed and defined by industry partners of the UQIDAR. Industry supervisors will co-guide the students along with UQ and IITD supervisors. The collaboration will also enable the establishment of a mobility or fellowship scheme to enable academics and postdoctoral fellows to spend time at each institute, expanding research linkages and offering career development opportunities for early career researchers.

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...