Skip to main content

IIT Delhi-University of Queensland International Joint PhD with Scholarships and fellowship



IIT Delhi-University of Queensland International Joint PhD in Science, Engineering, Management, Humanities: Apply by March 22
Start your future on Coursera today.
     
BY: USHA | 24 Feb 2020 11:17 AM

 
The University of Queensland, Australia and IIT Delhi have created a joint research programme titled UQ-IITD Academy of Research (UQIDAR).

UQIDAR will attract the best global talent, including elite students, academics, researchers and scientists to work on goal-directed, cross-disciplinary grand challenges that are of interest to Australia, India and the global community and that also align with The University of Queensland (UQ) and Indian Institute of Technology (IITD) research strengths. UQIDAR will enable UQ and IITD to enrol the brightest and most talented students in a joint PhD with joint supervision from both institutions. It is anticipated that the majority of students (i-students) will be recruited into the joint-PhD program in Delhi, and there will be a small cohort of Australia-anchored scholars (q-students).

i-students will spend 3 years in India and a minimum of one year in Australia while
q-students will spend 3 years in Australia and one year in India.
It is expected that candidature will be a maximum of 4 years in all disciplines, depending on a students progress, with scholarships offered for a maximum of 4 years. Both i-students and q-students will be expected to undertake some coursework. Upon successful completion of the program, students will be offered a PhD degree from both UQ and IITD.

Students of the Academy will
Gain a joint global qualification from two institutions (UQ and IITD) in 4 years;
Receive a generous scholarship;
Be in a position to take advantage of world-class facilities and resources and gain exposure to a new research ecosystem, network and environment; and
Benefit from global expertise via dual supervision between UQ and IITD as well as possible industry input.
The collaboration will involve strong industry linkages whereby industry will be involved in supporting PhD students. Industry supported PhD scholars will work on challenging research problems posed and defined by industry partners of the UQIDAR. Industry supervisors will co-guide the students along with UQ and IITD supervisors. The collaboration will also enable the establishment of a mobility or fellowship scheme to enable academics and postdoctoral fellows to spend time at each institute, expanding research linkages and offering career development opportunities for early career researchers.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...