Skip to main content

Supervised Classification


Supervised classification is a digital image classification method where the analyst guides the classification process by defining classes of interest and providing representative training samples.
The classifier uses these training samples to learn the spectral signatures of each class and then assigns every pixel in the image to the most appropriate class.

This method relies heavily on prior knowledge of the study area.

How Supervised Classification Works

✔ Step 1: Define Information Classes

These are real-world land-cover classes such as:

  • water

  • forest

  • agriculture

  • urban

  • barren land

✔ Step 2: Select Training Areas

Training areas (also called ROIs—Regions of Interest) are chosen on the image where the analyst is confident about the land-cover type.

✔ Step 3: Extract Spectral Signatures

The classifier calculates:

  • mean

  • variance

  • covariance

  • pixel distribution

for each class across different spectral bands.

✔ Step 4: Apply Decision Rules

The classification algorithm uses statistical rules to assign each pixel to a class.

✔ Step 5: Produce Classified Output

The final output is a thematic map showing land-cover classes.

When to Use Supervised Classification

Use supervised classification when:

  • You have prior knowledge of the landscape.

  • Ground truth or ancillary data is available (GPS points, survey data).

  • You can identify distinct, homogeneous training sites for each class.

  • The objective is to extract specific land-cover categories.

Information Class vs Spectral Class

Understanding the difference between these two is essential:

Information Class

  • Defined by the analyst based on real-world concepts.

  • Examples: village, river, wetland, cropland.

  • Represents semantic categories used for mapping and interpretation.

Spectral Class

  • Group of pixels that are spectrally similar, based on reflectance values.

  • Identified statistically by the software.

  • May not always match real-world categories exactly.

📌 Mapping involves matching spectral classes to information classes.

Supervised Training

Supervised training involves:

  • Manually selecting representative pixel samples

  • Ensuring the samples capture the full spectral variability of each class
    (e.g., different shades of vegetation or soil types)

  • Evaluating spectral signatures using

    • histograms

    • scatter plots

    • spectral profiles

    • separability indices (e.g., Jeffries–Matusita)

✔ Characteristics

  • Analyst-controlled

  • Knowledge-driven

  • Often more accurate

  • Requires skill in selecting high-quality training data

Classification Decision Rules (Supervised)

Decision rules determine how the classifier decides which class a pixel belongs to.

They fall into two broad groups:

Parametric Decision Rules

Parametric classifiers assume pixel values follow a normal (Gaussian) distribution.

These rules rely on statistical measures such as:

  • class mean

  • variance

  • covariance

  • probability density functions

Minimum Distance Classifier

  • Computes Euclidean or Mahalanobis distance between pixel and class mean.

  • Assigns pixel to the closest class mean.

  • Simple and fast but may misclassify overlapping classes.

Maximum Likelihood Classifier (MLC)

  • Most widely used supervised classifier.

  • Considers:

    • class mean

    • variance

    • covariance

    • overall probability distribution

  • Assigns pixel to the class with the highest likelihood of belonging.

  • Requires good training data; performs best when classes are normally distributed.

Nonparametric Decision Rules

Do not assume any specific statistical distribution; useful when pixel distributions are irregular.

Parallelepiped Classifier

  • Creates "boxes" using min–max values for each band.

  • A pixel is assigned to a class if its values fall within the box.

  • Fast, but may leave pixels:

    • unclassified (if no box contains the pixel)

    • ambiguously classified (if pixel falls in more than one box)

Feature Space Classifier

  • Plots pixel values in a multi-dimensional feature space.

  • Uses polygons in the feature space to define classes.

  • More flexible and accurate than parallelepiped.

  • Good for visually evaluating class separability.



Comments

Popular posts from this blog

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Hazard Mapping Spatial Planning Evacuation Planning GIS

Geographic Information Systems (GIS) play a pivotal role in disaster management by providing the tools and frameworks necessary for effective hazard mapping, spatial planning, and evacuation planning. These concepts are integral for understanding disaster risks, preparing for potential hazards, and ensuring that resources are efficiently allocated during and after a disaster. 1. Hazard Mapping: Concept: Hazard mapping involves the process of identifying, assessing, and visually representing the geographical areas that are at risk of certain natural or human-made hazards. Hazard maps display the probability, intensity, and potential impact of specific hazards (e.g., floods, earthquakes, hurricanes, landslides) within a given area. Terminologies: Hazard Zone: An area identified as being vulnerable to a particular hazard (e.g., flood zones, seismic zones). Hazard Risk: The likelihood of a disaster occurring in a specific location, influenced by factors like geography, climate, an...

Scope of Disaster Management

Disaster management refers to the systematic approach to managing and mitigating the impacts of disasters, encompassing both natural hazards (e.g., earthquakes, floods, hurricanes) and man-made disasters (e.g., industrial accidents, terrorism, nuclear accidents). Its primary objectives are to minimize potential losses, provide timely assistance to those affected, and facilitate swift and effective recovery. The scope of disaster management is multifaceted, encompassing a series of interconnected activities: preparedness, response, recovery, and mitigation. These activities must be strategically implemented before, during, and after a disaster. Key Concepts, Terminologies, and Examples 1. Awareness: Concept: Fostering public understanding of potential hazards and appropriate responses before, during, and after disasters. This involves disseminating information about risks, safety measures, and recommended actions. Terminologies: Hazard Awareness: Recognizing the types of natural...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Role of Geography in Disaster Management

Geography plays a pivotal role in disaster management by facilitating an understanding of the impact of natural disasters, guiding preparedness efforts, and supporting effective response and recovery. By analyzing geographical features, environmental conditions, and historical data, geography empowers disaster management professionals to identify risks, plan for hazards, respond to emergencies, assess damage, and monitor recovery. Geographic Information Systems (GIS) serve as crucial tools, providing critical spatial data for informed decision-making throughout the disaster management cycle. Key Concepts, Terminologies, and Examples 1. Identifying Risk: Concept: Risk identification involves analyzing geographical areas to understand their susceptibility to specific natural disasters. By studying historical events, topography, climate patterns, and environmental factors, disaster management experts can predict which regions are most vulnerable. Terminologies: Hazard Risk: The pr...