Skip to main content

Blackbody


🌑 Blackbody in Remote Sensing

🔹 Definition:

A blackbody is an idealized object that absorbs all incident electromagnetic radiation—regardless of wavelength or direction—and re-emits it perfectly according to its temperature.
It is a perfect emitter and perfect absorber.

🔹 Reflection:

  • For a blackbody, reflection = 0
    (It does not reflect any incoming radiation.)

🔹 Absorption:

  • Absorptivity (α) = 1
    It absorbs 100% of the radiation incident upon it.

🔹 Albedo:

  • Albedo = 0
    Since no radiation is reflected, the surface appears perfectly dark.

🔹 Emissivity (ε):

  • Emissivity = 1
    A blackbody emits the maximum possible radiation at a given temperature (as described by Planck's Law).

🔹 Remote Sensing Relevance:

In remote sensing, the concept of a blackbody helps in:

  • Calibrating thermal sensors.

  • Understanding radiation–temperature relationships (Stefan–Boltzmann and Wien's Laws).

  • Comparing real objects' emissivity to an ideal standard (the blackbody).


🌗 Graybody in Remote Sensing

🔹 Definition:

A graybody is a real object that absorbs and emits a constant fraction of radiation compared to a blackbody at the same temperature.
It is not a perfect absorber or emitter, but its emissivity is less than 1 and constant across all wavelengths.

🔹 Reflection:

  • Reflection ≠ 0
    Some radiation is reflected because the object is not a perfect absorber.

🔹 Absorption:

  • Absorptivity (α) < 1
    It absorbs only a portion of incoming radiation.
    (For most natural surfaces, α ranges between 0.8–0.98.)

🔹 Albedo:

  • Albedo > 0
    Since some part of the incoming radiation is reflected, albedo has a positive value (depending on the surface brightness).

🔹 Emissivity (ε):

  • Emissivity < 1 (but constant for all wavelengths).
    Real surfaces like soil, vegetation, and water have emissivities typically between 0.90–0.99, while bare metals or dry sand have lower emissivities.

🔹 Remote Sensing Relevance:

  • Most natural features act as graybodies.

  • Thermal infrared remote sensing relies on emissivity correction to accurately determine surface temperature.

  • Knowledge of a surface's emissivity helps in retrieving land surface temperature (LST) and understanding energy balance.


PropertyBlackbodyGraybody
Reflection0> 0
Absorption (α)1< 1
Albedo0> 0
Emissivity (ε)1< 1 (constant)
Real-world exampleIdealized (theoretical)Earth surfaces (soil, vegetation, water)
Use in Remote SensingCalibration, theoretical modelsReal-world surface temperature & energy studies


Comments

Popular posts from this blog

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...