Skip to main content

Data Collection and Classification in GIS


In GIS, data collection is the process of gathering geographic information from various sources to build a geospatial database, while data classification organizes this data into meaningful categories for analysis, interpretation, and visualization on a map. These two processes form the foundation for creating accurate, informative, and visually appealing maps.


Data Collection in GIS

Definition: The process of acquiring geographic and attribute data through various techniques, tools, and sources. This step ensures that the raw data required for GIS analysis is available in the desired format and quality.

Methods of Data Collection

  1. Field Data Collection:

    • Data is gathered directly at the location of interest using tools such as:
      • GPS Units: Capturing precise coordinates of geographic features.
      • Mobile Devices and Apps: Recording spatial and attribute data using tools like ArcGIS Field Maps or QField.
    • Example: Measuring the exact locations of trees in a forest using a GPS device.
  2. Remote Sensing:

    • Acquiring data through aerial photography, drones, or satellite imagery.
    • Useful for large-scale data collection, such as land cover mapping.
    • Example: Using Sentinel-2 satellite imagery to map urban growth.
  3. Digitizing:

    • Converting analog maps into digital formats by manually tracing features using GIS software.
    • Example: Digitizing a road network from a paper map.
  4. Secondary Data Sources:

    • Utilizing pre-existing datasets from government agencies, private organizations, or open-data portals.
    • Example: Downloading census data for population analysis.

Data Classification in GIS

Definition: The process of categorizing raw data into meaningful groups or classes to simplify its representation and make patterns easier to interpret.

Common Classification Methods

  1. Equal Interval:

    • Divides the range of data into classes of equal size.
    • Use Case: Ideal for data with uniform distribution.
    • Example: Classifying elevation data into intervals of 100 meters each.
  2. Quantile:

    • Distributes data values evenly among the classes, with each class containing the same number of data points.
    • Use Case: Suitable for datasets with a wide range of values.
    • Example: Grouping household incomes into five income brackets with equal counts in each.
  3. Natural Breaks (Jenks):

    • Identifies "breaks" or groupings in the data to minimize variance within classes.
    • Use Case: Effective for data with distinct clusters.
    • Example: Classifying population densities into natural groupings like urban, suburban, and rural.
  4. Standard Deviation:

    • Shows how much each data point deviates from the mean.
    • Use Case: Highlights outliers or extreme values.
    • Example: Mapping temperature anomalies from the average.

How GIS Software Facilitates Data Collection and Classification

  1. Field Data Collection Apps:

    • Tools like ArcGIS Field Maps, QField, or Survey123 allow users to collect data with GPS coordinates and attach attribute information.
    • Example: Collecting tree species data in a forest and recording their exact locations.
  2. Image Analysis Tools:

    • GIS platforms enable image classification for remote sensing data.
    • Example: Using supervised classification in QGIS to identify land cover types such as water, vegetation, and built-up areas.
  3. Data Visualization Tools:

    • GIS software applies classification schemes (e.g., equal interval, natural breaks) to display spatial patterns using colors, symbols, or shading.
    • Example: Visualizing pollution levels on a map using a gradient color scale.

Example Applications

  1. Land Use Mapping:

    • Data Collection: Field surveys and satellite imagery.
    • Classification: Categorizing land into classes like forest, urban, agriculture, and water.
    • Output: A thematic map showing land use types.
  2. Environmental Analysis:

    • Data Collection: Air quality monitoring stations.
    • Classification: Grouping air pollution levels into low, medium, and high categories using standard deviation.
    • Output: Identifying and mapping high-risk pollution zones.
  3. Demographic Analysis:

    • Data Collection: Census data from government databases.
    • Classification: Grouping populations by income, age, or education level using quantile classification.
    • Output: Maps showing income disparities across regions.

Key Points

  1. Integration: Data collection and classification work together to ensure accurate representation of spatial phenomena.
  2. Tool Utilization: GIS software like ArcGIS, QGIS, and Google Earth Engine streamline these processes.
  3. Application: These techniques are used across fields such as urban planning, environmental management, and public health for better decision-making.



Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Risk

Disaster Risk