Skip to main content

Data Collection and Classification in GIS


In GIS, data collection is the process of gathering geographic information from various sources to build a geospatial database, while data classification organizes this data into meaningful categories for analysis, interpretation, and visualization on a map. These two processes form the foundation for creating accurate, informative, and visually appealing maps.


Data Collection in GIS

Definition: The process of acquiring geographic and attribute data through various techniques, tools, and sources. This step ensures that the raw data required for GIS analysis is available in the desired format and quality.

Methods of Data Collection

  1. Field Data Collection:

    • Data is gathered directly at the location of interest using tools such as:
      • GPS Units: Capturing precise coordinates of geographic features.
      • Mobile Devices and Apps: Recording spatial and attribute data using tools like ArcGIS Field Maps or QField.
    • Example: Measuring the exact locations of trees in a forest using a GPS device.
  2. Remote Sensing:

    • Acquiring data through aerial photography, drones, or satellite imagery.
    • Useful for large-scale data collection, such as land cover mapping.
    • Example: Using Sentinel-2 satellite imagery to map urban growth.
  3. Digitizing:

    • Converting analog maps into digital formats by manually tracing features using GIS software.
    • Example: Digitizing a road network from a paper map.
  4. Secondary Data Sources:

    • Utilizing pre-existing datasets from government agencies, private organizations, or open-data portals.
    • Example: Downloading census data for population analysis.

Data Classification in GIS

Definition: The process of categorizing raw data into meaningful groups or classes to simplify its representation and make patterns easier to interpret.

Common Classification Methods

  1. Equal Interval:

    • Divides the range of data into classes of equal size.
    • Use Case: Ideal for data with uniform distribution.
    • Example: Classifying elevation data into intervals of 100 meters each.
  2. Quantile:

    • Distributes data values evenly among the classes, with each class containing the same number of data points.
    • Use Case: Suitable for datasets with a wide range of values.
    • Example: Grouping household incomes into five income brackets with equal counts in each.
  3. Natural Breaks (Jenks):

    • Identifies "breaks" or groupings in the data to minimize variance within classes.
    • Use Case: Effective for data with distinct clusters.
    • Example: Classifying population densities into natural groupings like urban, suburban, and rural.
  4. Standard Deviation:

    • Shows how much each data point deviates from the mean.
    • Use Case: Highlights outliers or extreme values.
    • Example: Mapping temperature anomalies from the average.

How GIS Software Facilitates Data Collection and Classification

  1. Field Data Collection Apps:

    • Tools like ArcGIS Field Maps, QField, or Survey123 allow users to collect data with GPS coordinates and attach attribute information.
    • Example: Collecting tree species data in a forest and recording their exact locations.
  2. Image Analysis Tools:

    • GIS platforms enable image classification for remote sensing data.
    • Example: Using supervised classification in QGIS to identify land cover types such as water, vegetation, and built-up areas.
  3. Data Visualization Tools:

    • GIS software applies classification schemes (e.g., equal interval, natural breaks) to display spatial patterns using colors, symbols, or shading.
    • Example: Visualizing pollution levels on a map using a gradient color scale.

Example Applications

  1. Land Use Mapping:

    • Data Collection: Field surveys and satellite imagery.
    • Classification: Categorizing land into classes like forest, urban, agriculture, and water.
    • Output: A thematic map showing land use types.
  2. Environmental Analysis:

    • Data Collection: Air quality monitoring stations.
    • Classification: Grouping air pollution levels into low, medium, and high categories using standard deviation.
    • Output: Identifying and mapping high-risk pollution zones.
  3. Demographic Analysis:

    • Data Collection: Census data from government databases.
    • Classification: Grouping populations by income, age, or education level using quantile classification.
    • Output: Maps showing income disparities across regions.

Key Points

  1. Integration: Data collection and classification work together to ensure accurate representation of spatial phenomena.
  2. Tool Utilization: GIS software like ArcGIS, QGIS, and Google Earth Engine streamline these processes.
  3. Application: These techniques are used across fields such as urban planning, environmental management, and public health for better decision-making.



Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...