Skip to main content

ASTER. MODIS. ASTER DEM




ASTER, MODIS, and ASTER DEM


1. ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer):

   - ASTER is a remote sensing instrument aboard NASA's Terra satellite, launched in 1999. It is designed to capture high-resolution images of the Earth's surface in multiple spectral bands, including visible, near-infrared, and thermal infrared.

   - ASTER provides data at three different spatial resolutions: 15 meters, 30 meters, and 90 meters. This versatility allows it to capture detailed information about the Earth's surface.

   - Applications of ASTER data include land cover classification, land surface temperature analysis, geological mapping, and environmental monitoring.


2. MODIS (Moderate Resolution Imaging Spectroradiometer):

   - MODIS is another instrument on NASA's Terra satellite, as well as the Aqua satellite, launched in 1999 and 2002, respectively. MODIS is known for its moderate spatial resolution, capturing data at 250 meters, 500 meters, and 1,000 meters.

   - MODIS provides daily global coverage and is widely used for monitoring Earth's climate, weather, and environmental changes. It measures a wide range of parameters, including land surface temperature, vegetation health, cloud cover, and sea surface temperature.

   - MODIS data is crucial for climate studies, weather forecasting, and tracking natural disasters like wildfires and hurricanes.


3. ASTER DEM (Digital Elevation Model):

   - ASTER DEM is a product derived from the ASTER sensor's stereo images. It provides a digital representation of the Earth's surface elevation at a high spatial resolution of 30 meters.

   - ASTER DEM data is used to create accurate topographic maps, assess terrain characteristics, and study landforms. It's vital for applications like flood modeling, landslide prediction, and urban planning.

   - Unlike ASTER imagery, which captures the visual and thermal properties of the Earth's surface, ASTER DEM focuses exclusively on elevation data.


In summary, ASTER and MODIS are remote sensing instruments on NASA's Terra and Aqua satellites, each with its specific spatial resolution and data collection capabilities. ASTER provides high-resolution spectral data, while MODIS offers daily global coverage at moderate spatial resolutions. ASTER DEM, on the other hand, is a specialized product derived from ASTER data that provides detailed elevation information, crucial for terrain analysis and various applications in remote sensing and geospatial analysis.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...