Skip to main content

Geographic phenomena fields objects boundaries.


In geography, geographic phenomena refer to features or processes that can be observed and studied on Earth's surface. These phenomena can be classified into three main categories: fields, objects, and boundaries. Each category has distinct characteristics, representations, and applications in Geographic Information Systems (GIS).


1. Fields

A field represents continuous, spatially varying data where a value is present at every location within the study area. It describes conditions that exist across a geographic area.

Characteristics:

  • Continuity: Fields have no discrete boundaries; the data is continuous.
  • Gradual Variability: The values of a field change gradually across space.
  • Representation: Typically modeled using raster data in GIS, where a grid structure assigns a value (e.g., temperature or elevation) to each cell.

Examples:

  • Temperature Map: Shows temperature variation across a region.
  • Rainfall Distribution: Displays rainfall levels over a large geographic area.
  • Elevation Data: Represents the height of land at every point in an area.

2. Objects

An object is a discrete geographic feature with a clearly defined location and boundaries. Objects are identifiable entities that exist as "whole" within a space.

Characteristics:

  • Discrete Entities: Objects are separate from their surroundings.
  • Defined Boundaries: Each object has clear limits.
  • Representation: Modeled using vector data in GIS, which represents objects as points, lines, or polygons.

Examples:

  • A City: Represented as a polygon or point on a map.
  • A River: Represented as a line feature in GIS.
  • A Building: Mapped as a point or polygon feature.

3. Boundaries

A boundary is the line or zone that marks the separation between different geographic features, fields, or phenomena. Boundaries can be sharp or gradual, natural or human-made.

Characteristics:

  • Sharp Boundaries: Distinct separation, such as a political border between two countries.
  • Gradual Transitions: Zones of change, such as a gradient from forest to grassland.
  • Representation: Typically represented as lines or polygons in GIS.

Examples:

  • Natural Boundary: Coastlines, rivers, or mountain ranges.
  • Human-Made Boundary: State or country borders, property lines.
  • Ecological Boundary: Transition zones between ecosystems, like a forest edge.

Key Differences Between Fields and Objects

AspectFieldsObjects
NatureContinuous data across spaceDiscrete entities with defined boundaries
RepresentationRaster dataVector data
ExamplesTemperature, elevation, rainfallCities, rivers, buildings
ChangeGradual changes across spaceFixed, defined locations


Fyugp note 
GIS second semester 

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...