Skip to main content

New PG Courses at BHU: Apply by May 31


Banaras Hindu University (BHU), Varanasi, has invited applications for admission to 5 New Post Graduate Courses 2018, namely, M.Sc. in Environmental Sciences with specializations in Earth & Atmospheric Sciences; Ecological Sciences; Environmental Biotechnology; Master in Business Economics and Management and M.Sc. in Mathematics and Computing all of 4 Semesters (2 Years) duration.
Eligibility: For admission to the (i) M.Sc. in Environmental Sciences (Earth & Atmospheric Sciences) (ii) M.Sc. in Environmental Sciences (Ecological Sciences) (iii) M.Sc. in Environmental Sciences (Environmental Biotechnology) at the Institute of Environment & Sustainable Development, applicant should hold a B.Sc (Hons) / B.Sc under 10+2+3 pattern / or B.Sc (Ag) or MBBS or B.Pharma or / B.E. / B.Tech or an equivalent examination recognized by Banaras Hindu University, securing at least 50% marks/equivalent GPA, in aggregate.


For admission to the Master in Business Economics and Management at the Department of Economics, applicant should hold Bachelor’s Degree in any discipline, such as, BA, B.Com, B.Sc., BBA, B.Tech./B.E., etc. under at least 10+2+3 pattern OR equivalent with a minimum of 50% aggregate marks. Applicant should also have minimum 50% marks at Higher and Senior Secondary level with Mathematics as one subject. However, the course requires advance knowledge of Mathematics.
For admission to M.Sc. in Mathematics and Computing at DST-Centre for Interdisciplinary Mathematical Sciences, eligibility is B.Sc (Hons)/B.A. (Hons)/B.Sc/B.A. under at least 10+2+3 pattern securing a minimum of 50% marks in the aggregate, considering all the three years of B.Sc/B.A. Courses [For B.Sc (Hons)/B.Sc only Science subjects and for B.A. (Hons)/B.A. all subjects except those subjects where only pass marks are required and which do not contribute to the total in the final (degree) mark sheet]. Applicant must have opted Mathematics Hons. or studied Mathematics in all the three years at Graduate level.
Selection Process: The admission to these courses will be made on the basis of merit in the entrance tests to be conducted by BHU.
A Common Entrance Test will be held M.Sc Environmental Sciences (Earth & Atmospheric Sciences) / (Ecological Sciences) / (Environmental Biotechnology). There will be one paper of 120 minutes duration, comprising Section A and B carrying 360 marks and based on multiple choice question of the Graduate Level. Applicant will have to attempt both sections. Section A will have 40 questions from basic Environmental Science and Section B will have 80 questions from each sub sections such as Life Sciences, Physical sciences and Earth Sciences. Applicant has to select only one sub section from Section B. The entrance Test for M.Sc. in Mathematics and Computing will have one paper of 120 minutes duration, carrying 360 marks containing 120 multiple choice questions based on graduate level of the Mathematics. The Test for admission to Master in Business Economics and Management will be a written test of 120 minutes durations carrying 360 marks with 120 multiple choice questions, based on undergraduate Level Knowledge on Business Economics, Management, Mathematics and Reasoning, Micro Economics, Macro Economics, Money and Banking, International Economics, Environmental Economics, Economics of Development and Growth, Public Economics, Indian Economy and Mathematics for Economics. More information elated to the tests is available in the Bulletin available at http://bhuonline.in/
Entrance test will be held on 24 June 2018 at Varanasi, Rajiv Gandhi South Campus-Barkachha, Mirzapur, Delhi, Hyderabad and Kolkatta provided there are sufficient number of candidates for the concerned Centre.
Application: Applications can be submitted at http://bhuonline.in/, latest by 31 May 2018.
Application Fee: For all courses, application fee is Rs. 250/- for SC/ST/PH and Rs.500/- for others. The fee can be paid online through Credit card/ Debit card, through the payme

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du cholĂ©ra dans Paris et le dĂ©partement de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....