Skip to main content

Thermal Infrared Remote Sensing


1. Principles

  • Thermal Infrared Remote Sensing is based on the detection of naturally emitted electromagnetic radiation from objects, rather than reflected solar energy.

  • According to Planck's Radiation Law, all objects with a temperature above absolute zero (0 K) emit electromagnetic radiation.

  • For Earth surface features, the peak emission lies in the Thermal Infrared (TIR) region of 3–14 μm of the electromagnetic spectrum.

  • The amount of radiation emitted is primarily a function of surface temperature and emissivity.

  • Sensors measure the radiant energy flux density (W/m²), which is later converted to surface temperature using Stefan-Boltzmann's Law.

2. Radiation Properties in TIR

  • Emissivity (ε): Ratio of radiation emitted by a surface to that emitted by a perfect blackbody at the same temperature. Natural surfaces like water (ε ≈ 0.98) have high emissivity, while bare soils and metals have lower values.

  • Blackbody: An idealized object that absorbs and emits all incident radiation perfectly.

  • Graybody: Real-world objects that emit less than a blackbody but with emissivity less than 1.

  • Kirchhoff's Law: At thermal equilibrium, absorptivity = emissivity.

  • Stefan-Boltzmann Law: Total energy emitted (E) = σT⁴ (σ = Stefan-Boltzmann constant, T = temperature in Kelvin).

  • Wien's Displacement Law: The wavelength of maximum emission (λmax) shifts inversely with temperature (λmax = 2897/T).

3. Thermal Infrared Atmospheric Windows

  • The Earth's atmosphere selectively absorbs and transmits thermal radiation.

  • Absorption bands are caused mainly by water vapor (H₂O), carbon dioxide (CO₂), and ozone (O₃).

  • The atmospheric windows in the TIR region allow maximum transmission of radiation to space and to sensors.

    • 3–5 μm window: Useful for high-temperature targets like volcanoes, forest fires, and engines.

    • 8–14 μm window: Used for Earth surface temperature monitoring, land cover studies, and meteorology.

  • These windows are crucial because radiation outside them is strongly absorbed by the atmosphere and cannot be sensed effectively.

4. Satellites and Sensors for TIR

  • Landsat series:

    • Landsat 5 TM (Band 6: 10.4–12.5 μm, 120 m resolution).

    • Landsat 7 ETM+ (Band 6, 60 m resolution).

    • Landsat 8 & 9 TIRS (Bands 10: 10.6–11.2 μm, Band 11: 11.5–12.5 μm, 100 m resolution).

  • ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer): 5 TIR bands (8.125–11.65 μm) with 90 m resolution.

  • MODIS (Moderate Resolution Imaging Spectroradiometer): Multiple TIR bands with 1 km resolution, useful for global monitoring.

  • ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station): Measures plant water stress via surface temperature.

  • NOAA AVHRR (Advanced Very High Resolution Radiometer): Long-term monitoring of sea surface and land surface temperature.

5. Applications 

  • Land Surface Temperature (LST): Monitoring urban heat islands, agricultural drought, and land use/land cover changes.

  • Geological Studies: Mapping geothermal activity, volcano monitoring, mineral exploration.

  • Hydrology: Detecting soil moisture, evaporation rates, wetland mapping.

  • Atmospheric Studies: Estimating cloud top temperature, greenhouse gas distribution.

  • Oceanography: Measuring Sea Surface Temperature (SST), monitoring El Niño and La Niña events.

  • Disaster Management: Detecting and monitoring forest fires, volcanic eruptions, thermal pollution.

  • Military & Surveillance: Night vision imaging, target detection using heat signatures.

  • Agriculture: Crop stress detection, irrigation management, evapotranspiration estimation.


Thermal Infrared Remote Sensing utilizes the natural emission of radiation in the 3–14 μm range, governed by physical radiation laws (Planck, Stefan-Boltzmann, Wien). With atmospheric windows (3–5 μm and 8–14 μm) providing clear observation, satellites like Landsat TIRS, ASTER, and MODIS make it possible to study environmental processes such as surface temperature, vegetation stress, urban heat islands, volcanic activity, and global climate dynamics.


Comments

Popular posts from this blog

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Purvanchal Hills

The Purvanchal Hills are an eastern extension of the Himalayan system , bending southward from Arunachal Pradesh along the Indo-Myanmar border. They include a series of discontinuous hill ranges such as the Patkai Bum, Naga Hills, Manipur Hills, Mizo (Lushai) Hills, Barail Range, and the Meghalaya Plateau (Khasi, Jaintia, and Garo Hills) . They are geologically young fold mountains (Tertiary period) made of sedimentary rocks (sandstone, shale, siltstone) . Their structure is the result of the collision of the Indian and Eurasian Plates , which uplifted the Himalayan orogeny . Unlike the snow-clad Greater Himalayas, these hills are moderate in elevation (600–3000 m) , with dense forests, heavy rainfall, and humid climate . 1. Barail Range Location: Separates the Brahmaputra Valley (north) and Barak Valley (south) in Assam. Geomorphology: Tertiary folded ranges with elongated ridges and valleys. Drainage: Acts as a watershed between the Barak River and the Brahma...