Skip to main content

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous

 Orbits in Remote Sensing

  • Orbit = the path a satellite follows around the Earth.

  • The orbit determines what part of Earth the satellite can see, how often it revisits, and what applications it is good for.

  • Remote sensing satellites mainly use two standard orbits:

    • Geostationary Orbit (GEO)

    • Sun-Synchronous Orbit (SSO)

 Geostationary Satellites (GEO)

Characteristics

  • Altitude: ~35,786 km above the equator.

  • Period: 24 hours → same as Earth's rotation.

  • Orbit type: Circular, directly above the equator.

  • Appears "stationary" over one fixed point on Earth.

Concepts & Terminologies

  • Geosynchronous = orbit period matches Earth's rotation (24h).

  • Geostationary = special type of geosynchronous orbit directly above equator → looks fixed.

  • Continuous coverage: Can monitor the same area all the time.

Applications

  • Weather satellites (e.g., INSAT, GOES) → continuous monitoring of clouds, storms, cyclones.

  • Telecommunication & broadcasting → because the antenna can always point at the same satellite.

 Sun-Synchronous Satellites (SSO)

Characteristics

  • Altitude: ~600–900 km (Low Earth Orbit).

  • Period: ~90–100 minutes (around 14 orbits per day).

  • Orbit inclination: near-polar (~98°).

  • Passes the same spot at the same local solar time every day → ensures consistent sunlight conditions.

Concepts & Terminologies

  • Near-polar orbit: passes close to the poles → covers almost all Earth's surface.

  • Sun-synchronous = orbit shifts slightly every day so the satellite crosses each location at the same local solar time → ideal for comparing images over time.

  • Revisit cycle = how often the satellite passes over the same area (e.g., every 5–16 days depending on mission).

Applications

  • Earth observation & remote sensing (Landsat, Sentinel, IRS, Cartosat, ResourceSat).

  • Environmental monitoring: forests, agriculture, urban growth, glaciers.

  • Disaster management: floods, earthquakes, landslides.

GEO vs. SSO (Simplified Comparison)

FeatureGeostationary (GEO)Sun-Synchronous (SSO)
Altitude~36,000 km600–900 km
CoverageFixed area, ~⅓ of EarthGlobal (pole-to-pole)
Revisit timeContinuous over one regionSame spot daily at same solar time
Best forWeather, communicationEarth observation, mapping
ExamplesINSAT, GOES, MeteosatLandsat, Sentinel, IRS, Cartosat


  • Geostationary satellites stay fixed over one region → great for real-time monitoring (weather, communication).

  • Sun-synchronous satellites orbit pole-to-pole and give global coverage with consistent sunlight → great for mapping and scientific studies.


Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

Disaster Risk

Disaster Risk