Skip to main content

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous

 Orbits in Remote Sensing

  • Orbit = the path a satellite follows around the Earth.

  • The orbit determines what part of Earth the satellite can see, how often it revisits, and what applications it is good for.

  • Remote sensing satellites mainly use two standard orbits:

    • Geostationary Orbit (GEO)

    • Sun-Synchronous Orbit (SSO)

 Geostationary Satellites (GEO)

Characteristics

  • Altitude: ~35,786 km above the equator.

  • Period: 24 hours → same as Earth's rotation.

  • Orbit type: Circular, directly above the equator.

  • Appears "stationary" over one fixed point on Earth.

Concepts & Terminologies

  • Geosynchronous = orbit period matches Earth's rotation (24h).

  • Geostationary = special type of geosynchronous orbit directly above equator → looks fixed.

  • Continuous coverage: Can monitor the same area all the time.

Applications

  • Weather satellites (e.g., INSAT, GOES) → continuous monitoring of clouds, storms, cyclones.

  • Telecommunication & broadcasting → because the antenna can always point at the same satellite.

 Sun-Synchronous Satellites (SSO)

Characteristics

  • Altitude: ~600–900 km (Low Earth Orbit).

  • Period: ~90–100 minutes (around 14 orbits per day).

  • Orbit inclination: near-polar (~98°).

  • Passes the same spot at the same local solar time every day → ensures consistent sunlight conditions.

Concepts & Terminologies

  • Near-polar orbit: passes close to the poles → covers almost all Earth's surface.

  • Sun-synchronous = orbit shifts slightly every day so the satellite crosses each location at the same local solar time → ideal for comparing images over time.

  • Revisit cycle = how often the satellite passes over the same area (e.g., every 5–16 days depending on mission).

Applications

  • Earth observation & remote sensing (Landsat, Sentinel, IRS, Cartosat, ResourceSat).

  • Environmental monitoring: forests, agriculture, urban growth, glaciers.

  • Disaster management: floods, earthquakes, landslides.

GEO vs. SSO (Simplified Comparison)

FeatureGeostationary (GEO)Sun-Synchronous (SSO)
Altitude~36,000 km600–900 km
CoverageFixed area, ~⅓ of EarthGlobal (pole-to-pole)
Revisit timeContinuous over one regionSame spot daily at same solar time
Best forWeather, communicationEarth observation, mapping
ExamplesINSAT, GOES, MeteosatLandsat, Sentinel, IRS, Cartosat


  • Geostationary satellites stay fixed over one region → great for real-time monitoring (weather, communication).

  • Sun-synchronous satellites orbit pole-to-pole and give global coverage with consistent sunlight → great for mapping and scientific studies.


Comments

Popular posts from this blog

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...