Skip to main content

Purvanchal Hills


The Purvanchal Hills are an eastern extension of the Himalayan system, bending southward from Arunachal Pradesh along the Indo-Myanmar border. They include a series of discontinuous hill ranges such as the Patkai Bum, Naga Hills, Manipur Hills, Mizo (Lushai) Hills, Barail Range, and the Meghalaya Plateau (Khasi, Jaintia, and Garo Hills).

They are geologically young fold mountains (Tertiary period) made of sedimentary rocks (sandstone, shale, siltstone). Their structure is the result of the collision of the Indian and Eurasian Plates, which uplifted the Himalayan orogeny. Unlike the snow-clad Greater Himalayas, these hills are moderate in elevation (600–3000 m), with dense forests, heavy rainfall, and humid climate.

1. Barail Range

  • Location: Separates the Brahmaputra Valley (north) and Barak Valley (south) in Assam.

  • Geomorphology: Tertiary folded ranges with elongated ridges and valleys.

  • Drainage: Acts as a watershed between the Barak River and the Brahmaputra River.

  • Vegetation: Tropical evergreen and semi-evergreen forests.

  • Tourism: Haflong (Assam's only hill station), known as the Switzerland of the East.

  • Economy: Bamboo products, horticulture, shifting cultivation (jhum).

2. Patkai Bum

  • Location: Along the Indo-Myanmar border, east of Nagaland and Arunachal Pradesh.

  • Geology: Formed of volcanic rocks with sediments; folded Tertiary formations.

  • Elevation: Average height 1500–2000 m.

  • Drainage: Numerous rain-fed streams feeding into the Brahmaputra and Chindwin rivers.

  • Climate: Receives very heavy monsoonal rainfall; dense evergreen forest cover.

  • Tourism: Tribal cultural circuits, unexplored trekking routes, and wildlife.

  • Strategic importance: International boundary hills between India and Myanmar.

3. Naga Hills

  • Location: Predominantly in Nagaland, stretching into northern Myanmar.

  • Highest Peak: Saramati (3,841 m).

  • Geology: Strongly folded sedimentary rocks (sandstone, shale).

  • Relief: Rugged, steep slopes, and deep valleys.

  • Drainage: Dhansiri and Doyang rivers, tributaries of Brahmaputra.

  • Vegetation: Dense tropical rainforests, bamboo, and medicinal plants.

  • Tourism: Kohima (capital), Hornbill Festival, Dzukou Valley trekking.

  • Culture: Home to Naga tribes with distinct traditions.

4. Garo Hills

  • Location: Western Meghalaya Plateau.

  • Geology: Very old rocks of the Precambrian era (gneiss, granite).

  • Elevation: 400–1500 m; Nokrek Peak (1515 m).

  • Vegetation: Subtropical forests, citrus fruits, and betel nut.

  • Tourism: Nokrek National Park (UNESCO Biosphere Reserve), limestone caves, waterfalls.

  • Culture: Matrilineal society (Garo tribe).

  • Drainage: Simsang and other short rivers draining into Brahmaputra.

5. Khasi Hills

  • Location: Central Meghalaya Plateau.

  • Highest Peak: Shillong Peak (1961 m).

  • Geology: Precambrian rocks with coal, limestone, uranium deposits.

  • Climate: Extremely high rainfall due to monsoon funneling effect; Mawsynram and Cherrapunji are among the wettest places on Earth.

  • Tourism: Shillong (Scotland of the East), living root bridges, waterfalls.

  • Vegetation: Evergreen forests, pine groves.

  • Drainage: Short, swift rivers flowing north into Brahmaputra.

6. Mizo Hills (Lushai Hills)

  • Location: Mizoram, forming southern Purvanchal extension.

  • Highest Peak: Phawngpui (Blue Mountain, 2,157 m).

  • Geology: Folded ridges and valleys, sedimentary rocks.

  • Relief: Parallel ranges with north–south orientation.

  • Climate: Humid subtropical, heavy monsoonal rainfall.

  • Tourism: Phawngpui National Park, bamboo forests, cultural heritage.

  • Vegetation: Bamboo forests (often affected by Mautam—cyclical flowering of bamboo).

  • Culture: Home to Mizo tribes with rich dance and festivals.

7. Jaintia Hills

  • Location: Eastern Meghalaya Plateau.

  • Elevation: 1200–1500 m.

  • Geology: Rich in limestone and coal deposits.

  • Geomorphology: Karst landscape with extensive caves (Krem Mawmluh, Krem Liat Prah—the longest cave in India).

  • Tourism: Caves, waterfalls, sacred groves.

  • Drainage: Rivers like Myntdu flow into Bangladesh plains.

8. Manipur Hills

  • Location: Surrounding the Imphal Valley in Manipur.

  • Elevation: 800–2000 m.

  • Geology: Sedimentary rocks with steep folded structures.

  • Relief: Saucer-shaped Imphal Valley encircled by hills.

  • Drainage: Rivers like Barak, Manipur River system.

  • Tourism: Loktak Lake (largest freshwater lake in NE India, with floating phumdis), Keibul Lamjao National Park (home of endangered Sangai deer).

  • Culture: Rich tribal diversity with unique traditions.

Geographical Concepts & Features

Geological Setting

  • These ranges belong to the Tertiary fold mountain system (young, unstable).

  • Composition: sandstone, shale, siltstone (sedimentary rocks).

  • Meghalaya Plateau: ancient block of the Peninsular shield, separated from Chotanagpur Plateau by Garo-Rajmahal Gap.

Drainage

  • Rivers: Barak, Dhansiri, Doyang, Kopili, Simsang.

  • Act as watersheds between Brahmaputra Basin and Barak Basin.

Vegetation

  • Tropical evergreen and semi-evergreen forests.

  • Bamboo, citrus fruits, orchids, and sacred groves.

Climate

  • Humid tropical with heavy monsoonal rainfall.

  • Cherrapunji and Mawsynram: rainfall >11,000 mm annually.


Tourism Potential

  • Adventure Tourism: Trekking (Dzukou Valley, Phawngpui).

  • Eco-Tourism: Caves (Meghalaya), Loktak Lake.

  • Cultural Tourism: Tribal festivals (Hornbill, Mizo festivals, Khasi heritage).

The Purvanchal Hills represent a unique geographical entity, distinct from the Greater Himalayas, with:

  • Young folded ranges (Tertiary origin).

  • Moderate heights (600–3000 m).

  • Heavy monsoonal rainfall, lush forests, and biodiversity.

  • Tourist attractions like Shillong, Loktak Lake, Haflong, Phawngpui, Cherrapunji.

  • Economic activities: shifting cultivation, forestry, coal and limestone mining.

  • Cultural significance: Tribal societies with unique traditions.


Comments

Popular posts from this blog

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Hazard Mapping Spatial Planning Evacuation Planning GIS

Geographic Information Systems (GIS) play a pivotal role in disaster management by providing the tools and frameworks necessary for effective hazard mapping, spatial planning, and evacuation planning. These concepts are integral for understanding disaster risks, preparing for potential hazards, and ensuring that resources are efficiently allocated during and after a disaster. 1. Hazard Mapping: Concept: Hazard mapping involves the process of identifying, assessing, and visually representing the geographical areas that are at risk of certain natural or human-made hazards. Hazard maps display the probability, intensity, and potential impact of specific hazards (e.g., floods, earthquakes, hurricanes, landslides) within a given area. Terminologies: Hazard Zone: An area identified as being vulnerable to a particular hazard (e.g., flood zones, seismic zones). Hazard Risk: The likelihood of a disaster occurring in a specific location, influenced by factors like geography, climate, an...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...