Skip to main content

WHO Water Quality Standards


The World Health Organization (WHO) sets global standards for drinking water quality to safeguard public health. These scientifically-based guidelines aim to prevent waterborne diseases, protect human health, and promote sustainable water resource management.

Key Concepts and Terminologies

  • Potable Water: Water that is safe for human consumption without posing any significant health risks.
  • Contaminants: Substances that pollute or degrade water quality, including microorganisms, chemicals, and physical agents.
  • Threshold Limit: The maximum permissible concentration of a substance in drinking water deemed safe for human health.
  • Guideline Values: WHO's recommended maximum concentrations of various substances in drinking water considered safe.

WHO's Approach

WHO's guidelines are based on two primary factors:

  1. Health-based targets: Prioritize protecting public health by ensuring water is free from disease-causing contaminants.
  2. Operational guidelines: Provide practical recommendations for monitoring, managing, and treating water to maintain quality.

Key WHO Water Quality Standards

Here are some key WHO-recommended guidelines for drinking water parameters:

ParameterWHO Standard
pH6.5 - 8.5
TurbidityBelow 5 NTU (preferably <1 NTU)
Total Coliforms/E. coliAbsent in 100 mL sample
Nitrate (NO₃⁻)≤ 50 mg/L
Arsenic (As)≤ 0.01 mg/L
Lead (Pb)≤ 0.01 mg/L
Chlorine (Residual)0.2 - 0.5 mg/L
Fluoride (F⁻)≤ 1.5 mg/L
Copper (Cu)≤ 2 mg/L

Parameter Explanations and Health Impacts

  • pH:
    • Explanation: Measures water acidity/alkalinity.
    • Health Impact: Extremes can corrode pipes, release metals, or cause scaling.
  • Turbidity:
    • Explanation: Measures water cloudiness due to suspended particles.
    • Health Impact: High turbidity can hinder disinfection and increase the risk of pathogen contamination.
  • Microbiological Quality:
    • Explanation: Focuses on the absence of disease-causing microorganisms.
    • Health Impact: Coliform bacteria, especially E. coli, indicate fecal contamination and potential for serious illnesses.
  • Total Dissolved Solids (TDS):
    • Explanation: Measures the total amount of dissolved inorganic and organic substances.
    • Health Impact: High TDS can affect taste, indicate other contaminants, and cause scaling.
  • Nitrate:
    • Explanation: Primarily from agricultural runoff.
    • Health Impact: High levels can cause methemoglobinemia ("blue baby syndrome") in infants.
  • Arsenic:
    • Explanation: A toxic heavy metal that can occur naturally or be introduced through industrial activities.
    • Health Impact: Long-term exposure increases the risk of cancer, skin lesions, and other health issues.
  • Lead:
    • Explanation: Can leach from lead pipes or plumbing fixtures.
    • Health Impact: A potent neurotoxin, especially harmful to children.
  • Chlorine (Residual):
    • Explanation: Essential for disinfection, ensures water remains free from microbial contamination.
    • Health Impact: High levels can cause irritation and affect taste.
  • Fluoride:
    • Explanation: Added to water to prevent tooth decay.
    • Health Impact: Excessive levels can cause dental fluorosis and, in severe cases, skeletal fluorosis.
  • Copper:
    • Explanation: Can leach from copper pipes.
    • Health Impact: High levels can cause gastrointestinal distress and long-term health issues.

WHO's Approach: A Risk Management Framework

  • Health-Based Focus: Prioritizes protecting human health by establishing safe contaminant limits.
  • Risk Management: Emphasizes a comprehensive approach, including water testing, source protection, and appropriate treatment methods.
  • Local Adaptation: Acknowledges that countries may need to adapt guidelines based on their specific water quality challenges and public health needs.

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...