Skip to main content

WHO Water Quality Standards


The World Health Organization (WHO) sets global standards for drinking water quality to safeguard public health. These scientifically-based guidelines aim to prevent waterborne diseases, protect human health, and promote sustainable water resource management.

Key Concepts and Terminologies

  • Potable Water: Water that is safe for human consumption without posing any significant health risks.
  • Contaminants: Substances that pollute or degrade water quality, including microorganisms, chemicals, and physical agents.
  • Threshold Limit: The maximum permissible concentration of a substance in drinking water deemed safe for human health.
  • Guideline Values: WHO's recommended maximum concentrations of various substances in drinking water considered safe.

WHO's Approach

WHO's guidelines are based on two primary factors:

  1. Health-based targets: Prioritize protecting public health by ensuring water is free from disease-causing contaminants.
  2. Operational guidelines: Provide practical recommendations for monitoring, managing, and treating water to maintain quality.

Key WHO Water Quality Standards

Here are some key WHO-recommended guidelines for drinking water parameters:

ParameterWHO Standard
pH6.5 - 8.5
TurbidityBelow 5 NTU (preferably <1 NTU)
Total Coliforms/E. coliAbsent in 100 mL sample
Nitrate (NO₃⁻)≤ 50 mg/L
Arsenic (As)≤ 0.01 mg/L
Lead (Pb)≤ 0.01 mg/L
Chlorine (Residual)0.2 - 0.5 mg/L
Fluoride (F⁻)≤ 1.5 mg/L
Copper (Cu)≤ 2 mg/L

Parameter Explanations and Health Impacts

  • pH:
    • Explanation: Measures water acidity/alkalinity.
    • Health Impact: Extremes can corrode pipes, release metals, or cause scaling.
  • Turbidity:
    • Explanation: Measures water cloudiness due to suspended particles.
    • Health Impact: High turbidity can hinder disinfection and increase the risk of pathogen contamination.
  • Microbiological Quality:
    • Explanation: Focuses on the absence of disease-causing microorganisms.
    • Health Impact: Coliform bacteria, especially E. coli, indicate fecal contamination and potential for serious illnesses.
  • Total Dissolved Solids (TDS):
    • Explanation: Measures the total amount of dissolved inorganic and organic substances.
    • Health Impact: High TDS can affect taste, indicate other contaminants, and cause scaling.
  • Nitrate:
    • Explanation: Primarily from agricultural runoff.
    • Health Impact: High levels can cause methemoglobinemia ("blue baby syndrome") in infants.
  • Arsenic:
    • Explanation: A toxic heavy metal that can occur naturally or be introduced through industrial activities.
    • Health Impact: Long-term exposure increases the risk of cancer, skin lesions, and other health issues.
  • Lead:
    • Explanation: Can leach from lead pipes or plumbing fixtures.
    • Health Impact: A potent neurotoxin, especially harmful to children.
  • Chlorine (Residual):
    • Explanation: Essential for disinfection, ensures water remains free from microbial contamination.
    • Health Impact: High levels can cause irritation and affect taste.
  • Fluoride:
    • Explanation: Added to water to prevent tooth decay.
    • Health Impact: Excessive levels can cause dental fluorosis and, in severe cases, skeletal fluorosis.
  • Copper:
    • Explanation: Can leach from copper pipes.
    • Health Impact: High levels can cause gastrointestinal distress and long-term health issues.

WHO's Approach: A Risk Management Framework

  • Health-Based Focus: Prioritizes protecting human health by establishing safe contaminant limits.
  • Risk Management: Emphasizes a comprehensive approach, including water testing, source protection, and appropriate treatment methods.
  • Local Adaptation: Acknowledges that countries may need to adapt guidelines based on their specific water quality challenges and public health needs.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...