Skip to main content

Spatial data and Attribute data

Spatial Data

Definition:
Spatial data represents the geometric location of features on the Earth's surface. It defines the shape, size, and position of geographic entities.

Key Concepts and Terminologies:

  • Geometric Representation:

    • Point Data: Represents a single location (e.g., a city center, weather station).
    • Line Data: Represents linear features (e.g., roads, rivers).
    • Polygon Data: Represents area-based features (e.g., administrative boundaries, lakes).
  • Coordinate Systems & Projections:

    • Geographic Coordinate System (GCS): Uses latitude and longitude (e.g., WGS 84).
    • Projected Coordinate System (PCS): Converts curved surface data to a flat map (e.g., UTM, Mercator).
  • Data Formats:

    • Vector Data: Stores discrete features (points, lines, polygons).
    • Raster Data: Stores continuous data in grid format (e.g., satellite imagery, elevation models).

Examples of Spatial Data:

  • A vector dataset of roads with line geometries stored in Shapefile (.shp) format.
  • A raster dataset of land surface temperature stored in GeoTIFF (.tif) format.

2. Attribute Data

Definition:
Attribute data is the descriptive (non-spatial) information attached to each spatial feature. It provides additional characteristics about the location.

Key Concepts and Terminologies:

  • Types of Attribute Data:

    • Nominal Data: Categorical labels (e.g., land cover type: "forest", "urban").
    • Ordinal Data: Ranked values (e.g., soil erosion severity: "low", "medium", "high").
    • Interval Data: Numeric values without a true zero (e.g., temperature in Celsius).
    • Ratio Data: Numeric values with a true zero (e.g., population, rainfall in mm).
  • Attribute Tables:

    • Data is stored in tabular form linked to spatial features.
    • Columns represent attributes (e.g., "Name", "Area"), and rows represent individual features (e.g., each city, road, or land parcel).

Examples of Attribute Data:

  • A city point feature with attributes:

    City NamePopulationElevation (m)GDP ($ billion)
    New York8,398,748101.5
    Tokyo13,515,271402.8
  • A polygon land use dataset with attributes:

    IDLand Use TypeArea (sq km)
    001Residential12.5
    002Commercial5.2

3. Thematic Characteristics

Definition:
Thematic characteristics define the subject or theme of spatial data. They determine what kind of attribute data is associated with each geographic feature.

Key Concepts and Terminologies:

  • Thematic Layers: Different types of spatial information stored separately in GIS.
  • Thematic Mapping: Visualizing data based on specific attributes (e.g., population density maps).
  • Classification Schemes: Grouping data into meaningful categories (e.g., NDVI vegetation classes).

Examples of Thematic Characteristics:

  • Land Cover Theme:
    • Attributes: "Forest", "Grassland", "Urban"
    • Example: A raster dataset showing global land cover classification.
  • Demographics Theme:
    • Attributes: "Population Density", "Age Group Distribution"
    • Example: A choropleth map of population density across districts.
  • Environmental Theme:
    • Attributes: "Temperature", "Precipitation"
    • Example: A raster dataset displaying monthly rainfall distribution.

Comments

Popular posts from this blog

Predicting Natural Hazards and Technology

Predicting natural hazards is a critical task that involves the use of various technologies to gather and analyze data to identify potential hazards, assess their likelihood and potential impact, and communicate the risks to the public. Technology plays a crucial role in this process by providing tools to help scientists and emergency responders gather and analyze data, create models, and share information with those who need it. One important technology used in predicting natural hazards is remote sensing. Remote sensing involves using sensors and imaging technology to gather data from a distance. This can include satellite imagery, aerial photography, and ground-based sensors. By analyzing this data, scientists can identify patterns and trends that may indicate potential hazards, such as changes in temperature, weather patterns, or geological activity. Another important technology is modeling software. Modeling software allows scientists to create simulations of natural hazards, such...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Filtering in Remote Sensing. Convolution. Edge enhancement. Low pass filter and High-pass filter

Filtering in Remote Sensing. Convolution. Edge enhancement. Low pass filter and High-pass filter Spatial filtering is a technique used in remote sensing to enhance the spatial resolution of an image. This is typically done by using a mathematical algorithm to process the raw data collected by the remote sensing instrument, with the goal of reducing noise and improving the overall quality of the image. Spatial frequency in remote sensing refers to the density of spatial details or features in an image. It is a measure of how quickly the intensity or brightness of an image changes over a given distance. High spatial frequency indicates a high density of fine details or edges in an image, while low spatial frequency indicates a low density of fine details or edges. Spatial frequency is an important concept in remote sensing because it can affect the ability to detect and interpret features in an image. It can also be used to evaluate the quality and usefulness of an image for certain type...

Remote Sensing Specialist Career

Remote Sensing Specialist https://bcpublicservice.hua.hrsmart.com/hr/ats/Posting/view/70053 Posting Title STO 27R - Remote Sensing Specialist Position Classification Scientific/Technical Off R27 Union GEU Location Victoria, BC V9B6X2 CA (Primary) Salary Range $71,298.93 - $81,387.14 annually Close Date 7/7/2020 Job Type Regular Full Time Temporary End Date Ministry/Organization BC Public Service -> FLNRO and Rural Development Ministry Branch / Division Forest Analysis & Inventory Branch / Office of The Chief Forester Division Job Summary Remote Sensing Specialist Scientific Technical Officer 27R This position is located in Victoria, BC. An eligibility list may be established. Contribute your valued expertise to support excellence in sustainable forest management The Ministry of Forests, Lands, Natural Resource Operations and Rural Development delivers holistic resource management services for British Columbians and has a mandate to manage specified Crown land and resources in a ...

Covid 19 സത്യവാങ്മൂലം, വെഹിക്കിള്‍ പാസ് എന്നിവ ഇനി മുതല്‍ ഓണ്‍ലൈനിലും

കോവിഡ് 19 : സത്യവാങ്മൂലം, വെഹിക്കിള്‍ പാസ് എന്നിവ ഇനി മുതല്‍ ഓണ്‍ലൈനിലും കോവിഡ് 19 നെ തുടര്‍ന്നുള്ള നിയന്ത്രണങ്ങളുടെ പശ്ചാത്തലത്തില്‍  പൊതുജനങ്ങള്‍ക്ക് അത്യാവശ്യ സാഹചര്യത്തില്‍ യാത്ര ചെയ്യുന്നതിനാവശ്യമായ സത്യവാങ്മൂലം, വെഹിക്കിള്‍ പാസ്  എന്നിവ ലഭിക്കുന്നതിന് ഓണ്‍ലൈന്‍ സംവിധാനം സജ്ജമാക്കിയാതായി സംസ്ഥാന പോലീസ് മേധാവി ലോക്നാഥ് ബെഹ്റ അറിയിച്ചു. https://pass.bsafe.kerala.gov.in എന്ന ലിങ്ക് വഴി പൊതുജനങ്ങള്‍ക്ക് ഈ സൗകര്യം പ്രയോജനപ്പെടുത്താം. സൈബര്‍ ഡോം നോഡല്‍ ഓഫീസര്‍ കൂടിയായ എഡിജിപി മനോജ് എബ്രഹാമിന്‍റെ നേതൃത്വത്തിൽ സൈബർ ഡോമിലെ വിദഗ്ധ സംഘമാണ് ഓണ്‍ലൈന്‍ സംവിധാനം വികസിപ്പിച്ചത്. വളരെ അത്യാവശ്യ  സന്ദര്‍ഭങ്ങളില്‍ യാത്ര ചെയ്യുന്നതിനാവശ്യമായ സത്യവാങ്മൂലം  ഓണ്‍ലൈനില്‍  ലഭിക്കുവാന്‍  യാത്രക്കാര്‍ പേര്, മേല്‍വിലാസം, വാഹനത്തിന്‍റെ നമ്പര്‍, സഹയാത്രികന്‍റെ പേര്, യാത്ര പോകേണ്ടതും തിരിച്ചു വരേണ്ടതുമായ സ്ഥലം, തീയതി, സമയം, മൊബൈല്‍ നമ്പര്‍ എന്നിവ രേഖപ്പെടുത്തിയതിനു ശേഷം യാത്രക്കാരന്‍റെ  ഒപ്പ് അപ്ലോഡ് ചെയ്യണം. ഈ വിവരങ്ങള്‍  പോലീസ്  കണ്‍ട്രോള്‍  സെന്ററിൽ പരിശോധിച്ചശേഷം സത്യവാങ്മൂലം അംഗീകരിച്ച ലിങ്ക് യാത്രക്കാരന്...