Skip to main content

Spatial data and Attribute data

Spatial Data

Definition:
Spatial data represents the geometric location of features on the Earth's surface. It defines the shape, size, and position of geographic entities.

Key Concepts and Terminologies:

  • Geometric Representation:

    • Point Data: Represents a single location (e.g., a city center, weather station).
    • Line Data: Represents linear features (e.g., roads, rivers).
    • Polygon Data: Represents area-based features (e.g., administrative boundaries, lakes).
  • Coordinate Systems & Projections:

    • Geographic Coordinate System (GCS): Uses latitude and longitude (e.g., WGS 84).
    • Projected Coordinate System (PCS): Converts curved surface data to a flat map (e.g., UTM, Mercator).
  • Data Formats:

    • Vector Data: Stores discrete features (points, lines, polygons).
    • Raster Data: Stores continuous data in grid format (e.g., satellite imagery, elevation models).

Examples of Spatial Data:

  • A vector dataset of roads with line geometries stored in Shapefile (.shp) format.
  • A raster dataset of land surface temperature stored in GeoTIFF (.tif) format.

2. Attribute Data

Definition:
Attribute data is the descriptive (non-spatial) information attached to each spatial feature. It provides additional characteristics about the location.

Key Concepts and Terminologies:

  • Types of Attribute Data:

    • Nominal Data: Categorical labels (e.g., land cover type: "forest", "urban").
    • Ordinal Data: Ranked values (e.g., soil erosion severity: "low", "medium", "high").
    • Interval Data: Numeric values without a true zero (e.g., temperature in Celsius).
    • Ratio Data: Numeric values with a true zero (e.g., population, rainfall in mm).
  • Attribute Tables:

    • Data is stored in tabular form linked to spatial features.
    • Columns represent attributes (e.g., "Name", "Area"), and rows represent individual features (e.g., each city, road, or land parcel).

Examples of Attribute Data:

  • A city point feature with attributes:

    City NamePopulationElevation (m)GDP ($ billion)
    New York8,398,748101.5
    Tokyo13,515,271402.8
  • A polygon land use dataset with attributes:

    IDLand Use TypeArea (sq km)
    001Residential12.5
    002Commercial5.2

3. Thematic Characteristics

Definition:
Thematic characteristics define the subject or theme of spatial data. They determine what kind of attribute data is associated with each geographic feature.

Key Concepts and Terminologies:

  • Thematic Layers: Different types of spatial information stored separately in GIS.
  • Thematic Mapping: Visualizing data based on specific attributes (e.g., population density maps).
  • Classification Schemes: Grouping data into meaningful categories (e.g., NDVI vegetation classes).

Examples of Thematic Characteristics:

  • Land Cover Theme:
    • Attributes: "Forest", "Grassland", "Urban"
    • Example: A raster dataset showing global land cover classification.
  • Demographics Theme:
    • Attributes: "Population Density", "Age Group Distribution"
    • Example: A choropleth map of population density across districts.
  • Environmental Theme:
    • Attributes: "Temperature", "Precipitation"
    • Example: A raster dataset displaying monthly rainfall distribution.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...