Skip to main content

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions:

1. Vulnerability:

  • Definition: The susceptibility of individuals, communities, or assets to harm from a disaster.
  • Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability.
  • Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts.

2. Exposure:

  • Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas.
  • Factors: Population density, land use patterns, and infrastructure development influence exposure.
  • Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks.

3. Capacity:

  • Definition: A community's ability to prepare for, respond to, and recover from disasters.
  • Factors: Strong governance, early warning systems, resilient infrastructure, and community preparedness contribute to capacity.
  • Example: Countries with well-developed disaster management systems and resilient infrastructure can recover more quickly from disasters.

4. Hazard Characteristics:

  • Definition: The nature, intensity, frequency, and duration of a hazard.
  • Factors: Climate change, tectonic activity, and human activities can influence hazard characteristics.
  • Example: Increasing frequency and intensity of extreme weather events due to climate change pose significant risks to communities.

5. Data and Information Management:

  • Definition: The collection, analysis, and dissemination of data to inform decision-making and improve disaster response.
  • Factors: Advanced technologies, effective communication systems, and data-driven approaches are crucial.
  • Example: Early warning systems rely on real-time data to alert communities of impending hazards.

6. Governance:

  • Definition: The institutional framework that coordinates disaster risk reduction efforts.
  • Factors: Strong leadership, effective policies, and public-private partnerships are essential.
  • Example: Well-governed countries with transparent and accountable institutions are better equipped to manage disaster risks.

The Disaster Risk Equation

The interplay of these dimensions can be encapsulated in a simple equation:

Risk = Hazard x Vulnerability x Exposure / Capacity

By reducing vulnerability, exposure, and enhancing capacity, we can significantly mitigate disaster risk.

The Sendai Framework

The Sendai Framework for Disaster Risk Reduction 2015-2030 provides a global blueprint for building resilient societies. It emphasizes:

  • Reducing exposure and vulnerability through sustainable development.
  • Strengthening governance to improve coordination and decision-making.
  • Improving resilience and adaptive capacity to enhance community preparedness and response.




Fyugp note 
Disaster Management 

PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...