Skip to main content

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions:

1. Vulnerability:

  • Definition: The susceptibility of individuals, communities, or assets to harm from a disaster.
  • Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability.
  • Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts.

2. Exposure:

  • Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas.
  • Factors: Population density, land use patterns, and infrastructure development influence exposure.
  • Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks.

3. Capacity:

  • Definition: A community's ability to prepare for, respond to, and recover from disasters.
  • Factors: Strong governance, early warning systems, resilient infrastructure, and community preparedness contribute to capacity.
  • Example: Countries with well-developed disaster management systems and resilient infrastructure can recover more quickly from disasters.

4. Hazard Characteristics:

  • Definition: The nature, intensity, frequency, and duration of a hazard.
  • Factors: Climate change, tectonic activity, and human activities can influence hazard characteristics.
  • Example: Increasing frequency and intensity of extreme weather events due to climate change pose significant risks to communities.

5. Data and Information Management:

  • Definition: The collection, analysis, and dissemination of data to inform decision-making and improve disaster response.
  • Factors: Advanced technologies, effective communication systems, and data-driven approaches are crucial.
  • Example: Early warning systems rely on real-time data to alert communities of impending hazards.

6. Governance:

  • Definition: The institutional framework that coordinates disaster risk reduction efforts.
  • Factors: Strong leadership, effective policies, and public-private partnerships are essential.
  • Example: Well-governed countries with transparent and accountable institutions are better equipped to manage disaster risks.

The Disaster Risk Equation

The interplay of these dimensions can be encapsulated in a simple equation:

Risk = Hazard x Vulnerability x Exposure / Capacity

By reducing vulnerability, exposure, and enhancing capacity, we can significantly mitigate disaster risk.

The Sendai Framework

The Sendai Framework for Disaster Risk Reduction 2015-2030 provides a global blueprint for building resilient societies. It emphasizes:

  • Reducing exposure and vulnerability through sustainable development.
  • Strengthening governance to improve coordination and decision-making.
  • Improving resilience and adaptive capacity to enhance community preparedness and response.




Fyugp note 
Disaster Management 

PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...