Skip to main content

The global dimensions of disaster

Disasters are not merely natural occurrences but complex interactions between natural hazards and human vulnerabilities. To effectively address disaster risk, we must consider several interconnected dimensions:

1. Vulnerability:

  • Definition: The susceptibility of individuals, communities, or assets to harm from a disaster.
  • Factors: Socioeconomic conditions, geographic location, and environmental factors influence vulnerability.
  • Example: Communities with high poverty rates and limited access to resources are more vulnerable to disaster impacts.

2. Exposure:

  • Definition: The degree to which people, property, and infrastructure are located in hazard-prone areas.
  • Factors: Population density, land use patterns, and infrastructure development influence exposure.
  • Example: Coastal cities with high population density are highly exposed to hurricane and tsunami risks.

3. Capacity:

  • Definition: A community's ability to prepare for, respond to, and recover from disasters.
  • Factors: Strong governance, early warning systems, resilient infrastructure, and community preparedness contribute to capacity.
  • Example: Countries with well-developed disaster management systems and resilient infrastructure can recover more quickly from disasters.

4. Hazard Characteristics:

  • Definition: The nature, intensity, frequency, and duration of a hazard.
  • Factors: Climate change, tectonic activity, and human activities can influence hazard characteristics.
  • Example: Increasing frequency and intensity of extreme weather events due to climate change pose significant risks to communities.

5. Data and Information Management:

  • Definition: The collection, analysis, and dissemination of data to inform decision-making and improve disaster response.
  • Factors: Advanced technologies, effective communication systems, and data-driven approaches are crucial.
  • Example: Early warning systems rely on real-time data to alert communities of impending hazards.

6. Governance:

  • Definition: The institutional framework that coordinates disaster risk reduction efforts.
  • Factors: Strong leadership, effective policies, and public-private partnerships are essential.
  • Example: Well-governed countries with transparent and accountable institutions are better equipped to manage disaster risks.

The Disaster Risk Equation

The interplay of these dimensions can be encapsulated in a simple equation:

Risk = Hazard x Vulnerability x Exposure / Capacity

By reducing vulnerability, exposure, and enhancing capacity, we can significantly mitigate disaster risk.

The Sendai Framework

The Sendai Framework for Disaster Risk Reduction 2015-2030 provides a global blueprint for building resilient societies. It emphasizes:

  • Reducing exposure and vulnerability through sustainable development.
  • Strengthening governance to improve coordination and decision-making.
  • Improving resilience and adaptive capacity to enhance community preparedness and response.




Fyugp note 
Disaster Management 

PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

Accuracy Assessment

Accuracy assessment is the process of checking how correct your classified satellite image is . 👉 After supervised classification, the satellite image is divided into classes like: Water Forest Agriculture Built-up land Barren land But classification is done using computer algorithms, so some areas may be wrongly classified . 👉 Accuracy assessment helps to answer this question: ✔ "How much of my classified map is correct compared to real ground conditions?"  Goal The main goal is to: Measure reliability of classified maps Identify classification errors Improve classification results Provide scientific validity to research 👉 Without accuracy assessment, a classified map is not considered scientifically reliable . Reference Data (Ground Truth Data) Reference data is real-world information used to check classification accuracy. It can be collected from: ✔ Field survey using GPS ✔ High-resolution satellite images (Google Earth etc.) ✔ Existing maps or survey reports 🧭 Exampl...

Development and scope of Environmental Geography and Recent concepts in environmental Geography

Environmental Geography studies the relationship between humans and nature in a spatial (place-based) way. It combines Physical Geography (natural processes) and Human Geography (human activities). A. Early Stage 🔹 Environmental Determinism Concept: Nature controls human life. Meaning: Climate, landforms, and soil decide how people live. Example: People in deserts (like Sahara Desert) live differently from people in fertile river valleys. 🔹 Possibilism Concept: Humans can modify nature. Meaning: Environment gives options, but humans make choices. Example: In dry areas like Rajasthan, people use irrigation to grow crops. 👉 In this stage, geography was mostly descriptive (explaining what exists). B. Evolution Stage (Mid-20th Century) Environmental problems increased due to: Industrialization Urbanization Deforestation Pollution Geographers started studying: Environmental degradation Resource management Human impact on ecosystems The field became analytical and problem-solving...

Change Detection

Change detection is the process of finding differences on the Earth's surface over time by comparing satellite images of the same area taken on different dates . After supervised classification , two classified maps (e.g., Year-1 and Year-2) are compared to identify land use / land cover changes .  Goal To detect where , what , and how much change has occurred To monitor urban growth, deforestation, floods, agriculture, etc.  Basic Concept Forest → Forest = No change Forest → Urban = Change detected Key Terminologies Multi-temporal images : Images of the same area at different times Post-classification comparison : Comparing two classified maps Change matrix : Table showing class-to-class change Change / No-change : Whether land cover remains same or different Main Methods Post-classification comparison – Most common and easy Image differencing – Subtract pixel values Image ratioing – Divide pixel values Deep learning methods – Advanced AI-based detection Examples Agricult...

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Isodata clustering

Iso Cluster Classification in Unsupervised Image Classification Iso Cluster Classification is a common unsupervised classification technique used in remote sensing. The "Iso Cluster" algorithm groups pixels with similar spectral characteristics into clusters, or spectral classes, based solely on the data's statistical properties. Unlike supervised classification, Iso Cluster classification doesn't require the analyst to predefine classes or training areas; instead, the algorithm analyzes the image data to find natural groupings of pixels. The analyst interprets these groups afterward to label them with meaningful information classes (e.g., water, forest, urban). How Iso Cluster Classification Works The Iso Cluster algorithm follows several steps to group pixels: Initial Data Analysis : The algorithm examines the entire dataset to understand the spectral distribution of the pixels across the spectral bands. Clustering Process :    - The algorithm starts by divid...