Skip to main content

Overview of Disasters in India


India's Vulnerability to Natural Disasters

India's diverse geography and climate make it highly susceptible to a range of natural disasters. These events, including earthquakes, tsunamis, floods, droughts, cyclones, and landslides, can have devastating consequences for millions of people and the economy.

Major Natural Disasters Affecting India:

  1. Earthquakes:

    • Tectonic Setting: India's position on the Indian Plate, which is colliding with the Eurasian Plate, makes it prone to seismic activity.
    • Impact: Earthquakes can cause widespread destruction, including building collapses, landslides, and tsunamis. The 2001 Gujarat earthquake is a prime example of such devastation.
  2. Tsunamis:

    • Oceanic Triggers: Underwater earthquakes and volcanic eruptions can generate tsunamis, as seen in the 2004 Indian Ocean Tsunami.
    • Impact: Coastal areas are particularly vulnerable to tsunamis, which can lead to massive loss of life and property.
  3. Floods:

    • Monsoon Influence: India's monsoon system brings heavy rainfall, often leading to floods in river basins and urban areas.
    • Impact: Floods can cause widespread damage to infrastructure, agriculture, and human settlements, as exemplified by the 2015 South India floods.
  4. Glacial Lake Outburst Floods (GLOFs):

    • Himalayan Threat: The Himalayan region is prone to GLOFs, which occur when glacial lakes breach their natural dams.
    • Impact: GLOFs can cause rapid flooding, erosion, and landslides, as seen in the 2021 Uttarakhand disaster.
  5. Cyclones:

    • Coastal Vulnerability: India's long coastline is exposed to cyclones from both the Bay of Bengal and the Arabian Sea.
    • Impact: Cyclones can bring strong winds, heavy rainfall, and storm surges, as demonstrated by Cyclone Amphan in 2020.
  6. Droughts:

    • Arid and Semi-Arid Regions: Large parts of India, especially in the western and central regions, are prone to droughts.
    • Impact: Droughts can lead to crop failures, water scarcity, and economic hardship.
  7. Forest Fires:

    • Himalayan Threat: Forest fires, often triggered by human activities or lightning strikes, can devastate forests in the Himalayan region.
    • Impact: Fires can lead to loss of biodiversity, soil erosion, and air pollution.

India's Response to Natural Disasters:

India has implemented various strategies to mitigate the impact of natural disasters:

  • National Disaster Management Authority (NDMA): Oversees disaster management efforts.
  • Early Warning Systems: Provides timely alerts for cyclones, tsunamis, and floods.
  • Community-Based Disaster Risk Reduction (CBDRR): Empowers communities to prepare and respond to disasters.
  • Infrastructure Development: Building resilient infrastructure, especially in disaster-prone areas.
  • Climate Change Adaptation: Addressing the impacts of climate change on disaster risk.

Fyugp note 
Disaster Management 

PG and Research Department of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...