Skip to main content

Thermal Remote Sensing


Thermal remote sensing is a technique that measures the heat emitted by objects, often referred to as their radiant temperature. Unlike traditional photography, which relies on reflected sunlight, thermal remote sensing captures the infrared radiation emitted by objects based on their temperature.

Key Concepts and Terminology

  • Electromagnetic Spectrum: The range of all types of electromagnetic radiation, from radio waves to gamma rays. Thermal remote sensing primarily operates in the thermal infrared region of the spectrum.
  • Radiant Temperature: The temperature of an object as measured by its emitted thermal radiation. It may differ from the actual (kinetic) temperature due to factors like emissivity.
  • Emissivity: The ratio of an object's thermal radiation to that of a blackbody at the same temperature. A blackbody emits the maximum possible thermal radiation.
  • Thermal Infrared (TIR): A region of the electromagnetic spectrum where objects emit most of their thermal radiation. The primary bands used for thermal remote sensing are 3-5 µm and 8-14 µm.
  • Thermal Radiometer: A sensor designed to measure the radiant temperature of a specific point or area.
  • Thermal Imagery: Images created by capturing and processing thermal radiation. These images often appear in grayscale or pseudo-color, where warmer objects are represented by brighter or different colors.

Applications of Thermal Remote Sensing

  • Geology: Detecting volcanic activity, mapping mineral deposits, and monitoring geothermal areas.
  • Environmental Monitoring: Tracking wildfires, studying urban heat islands, and assessing water quality.
  • Agriculture: Monitoring crop health, detecting irrigation problems, and estimating crop yields.
  • Meteorology: Predicting weather patterns, tracking hurricanes, and studying ocean currents.
  • Security: Detecting concealed objects, identifying potential threats, and monitoring border security.

Advantages of Thermal Remote Sensing

  • Day and Night Capability: Unlike traditional photography, thermal remote sensing can operate 24/7, regardless of lighting conditions.
  • Non-Contact Measurement: It allows for measuring temperatures without physically touching the object.
  • Real-Time Monitoring: It can provide immediate information about temperature variations.
  • Wide Range of Applications: It has applications in various fields, from geology to meteorology.


Important Satellites for Thermal Remote Sensing

Earth Observation Satellites

  • Landsat Series: Operated by NASA and the USGS, Landsat satellites have a long history of providing multispectral and thermal infrared imagery for Earth observation.
  • MODIS (Moderate Resolution Imaging Spectroradiometer): A sensor aboard NASA's Terra and Aqua satellites, MODIS provides global coverage at moderate spatial resolution, including thermal infrared bands.
  • Sentinel-3: A European Space Agency satellite mission designed to provide a global ocean and land monitoring service, including thermal infrared data.
  • NOAA GOES Series: Geostationary Operational Environmental Satellites operated by the National Oceanic and Atmospheric Administration (NOAA) provide high-frequency thermal infrared imagery for weather forecasting and environmental monitoring.  
  • Suomi NPP: A joint NASA-NOAA satellite carrying the Visible Infrared Imaging Radiometer Suite (VIIRS), which includes thermal infrared bands for environmental monitoring.

Other Notable Satellites

  • ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer): A sensor aboard NASA's Terra satellite, ASTER provides high-resolution thermal infrared imagery for geological and environmental applications.
  • SMAP (Soil Moisture Active Passive): A NASA satellite mission designed to measure soil moisture globally using both active and passive microwave sensors, including thermal infrared bands.
  • Thermal Infrared Sensor (TIRS) on Landsat 8: A thermal infrared sensor designed to improve the accuracy and sensitivity of temperature measurements compared to previous Landsat missions.


Comments

Popular posts from this blog

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...