Skip to main content

Thermal Remote Sensing


Thermal remote sensing is a technique that measures the heat emitted by objects, often referred to as their radiant temperature. Unlike traditional photography, which relies on reflected sunlight, thermal remote sensing captures the infrared radiation emitted by objects based on their temperature.

Key Concepts and Terminology

  • Electromagnetic Spectrum: The range of all types of electromagnetic radiation, from radio waves to gamma rays. Thermal remote sensing primarily operates in the thermal infrared region of the spectrum.
  • Radiant Temperature: The temperature of an object as measured by its emitted thermal radiation. It may differ from the actual (kinetic) temperature due to factors like emissivity.
  • Emissivity: The ratio of an object's thermal radiation to that of a blackbody at the same temperature. A blackbody emits the maximum possible thermal radiation.
  • Thermal Infrared (TIR): A region of the electromagnetic spectrum where objects emit most of their thermal radiation. The primary bands used for thermal remote sensing are 3-5 µm and 8-14 µm.
  • Thermal Radiometer: A sensor designed to measure the radiant temperature of a specific point or area.
  • Thermal Imagery: Images created by capturing and processing thermal radiation. These images often appear in grayscale or pseudo-color, where warmer objects are represented by brighter or different colors.

Applications of Thermal Remote Sensing

  • Geology: Detecting volcanic activity, mapping mineral deposits, and monitoring geothermal areas.
  • Environmental Monitoring: Tracking wildfires, studying urban heat islands, and assessing water quality.
  • Agriculture: Monitoring crop health, detecting irrigation problems, and estimating crop yields.
  • Meteorology: Predicting weather patterns, tracking hurricanes, and studying ocean currents.
  • Security: Detecting concealed objects, identifying potential threats, and monitoring border security.

Advantages of Thermal Remote Sensing

  • Day and Night Capability: Unlike traditional photography, thermal remote sensing can operate 24/7, regardless of lighting conditions.
  • Non-Contact Measurement: It allows for measuring temperatures without physically touching the object.
  • Real-Time Monitoring: It can provide immediate information about temperature variations.
  • Wide Range of Applications: It has applications in various fields, from geology to meteorology.


Important Satellites for Thermal Remote Sensing

Earth Observation Satellites

  • Landsat Series: Operated by NASA and the USGS, Landsat satellites have a long history of providing multispectral and thermal infrared imagery for Earth observation.
  • MODIS (Moderate Resolution Imaging Spectroradiometer): A sensor aboard NASA's Terra and Aqua satellites, MODIS provides global coverage at moderate spatial resolution, including thermal infrared bands.
  • Sentinel-3: A European Space Agency satellite mission designed to provide a global ocean and land monitoring service, including thermal infrared data.
  • NOAA GOES Series: Geostationary Operational Environmental Satellites operated by the National Oceanic and Atmospheric Administration (NOAA) provide high-frequency thermal infrared imagery for weather forecasting and environmental monitoring.  
  • Suomi NPP: A joint NASA-NOAA satellite carrying the Visible Infrared Imaging Radiometer Suite (VIIRS), which includes thermal infrared bands for environmental monitoring.

Other Notable Satellites

  • ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer): A sensor aboard NASA's Terra satellite, ASTER provides high-resolution thermal infrared imagery for geological and environmental applications.
  • SMAP (Soil Moisture Active Passive): A NASA satellite mission designed to measure soil moisture globally using both active and passive microwave sensors, including thermal infrared bands.
  • Thermal Infrared Sensor (TIRS) on Landsat 8: A thermal infrared sensor designed to improve the accuracy and sensitivity of temperature measurements compared to previous Landsat missions.


Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Solar Radiation and Remote Sensing

Satellite Remote Sensing Satellite remote sensing is the science of acquiring information about Earth's surface and atmosphere without physical contact , using sensors mounted on satellites. These sensors detect and record electromagnetic radiation (EMR) that is either emitted or reflected from the Earth's surface. Solar Radiation & Earth's Energy Balance Solar Radiation is the primary source of energy for Earth's climate system. It originates from the Sun and travels through space as electromagnetic waves . Incoming Shortwave Solar Radiation (insolation) consists mostly of ultraviolet, visible, and near-infrared wavelengths . When it reaches Earth, it can be: Absorbed by the atmosphere, clouds, or surface Reflected back to space Scattered by atmospheric particles Outgoing Longwave Radiation is the infrared energy emitted by Earth back into space after absorbing solar energy. This process helps maintain Earth's thermal bala...