Skip to main content

Contrast manipulation

Contrast stretching is a common image enhancement technique in remote sensing used to improve the visual quality and interpretability of satellite or aerial imagery. It involves expanding the range of pixel values in an image, typically by remapping the original values to a new range. This process enhances the visual contrast between different features in the image.


1. Linear Contrast Stretching:

   Linear contrast stretching is the simplest form of contrast stretching. It involves applying a linear transformation to the pixel values in the image. The transformation stretches the original range of pixel values to a new range. This is typically done using the following formula for each pixel in the image:

   

   NewPixelValue = (OriginalPixelValue - MinOriginalValue)  (NewMaxValue - NewMinValue) / (MaxOriginalValue - MinOriginalValue) + NewMinValue


   - `OriginalPixelValue` is the value of the pixel in the original image.

   - `MinOriginalValue` and `MaxOriginalValue` are the minimum and maximum pixel values in the original image.

   - `NewMinValue` and `NewMaxValue` are the desired minimum and maximum values for the stretched image.


   Linear contrast stretching can improve the overall brightness and contrast of the image.


2. Nonlinear Contrast Stretching:

   Nonlinear contrast stretching is more advanced and allows for greater flexibility in enhancing specific image features. Unlike linear stretching, it involves applying a nonlinear transformation to the pixel values. Various functions, such as logarithmic, power-law, or histogram equalization, can be used for this purpose.


   - Logarithmic Stretching: This method enhances the lower end of the pixel value range more than the higher end, which can be useful for revealing details in dark areas of the image.


   - Power-law (Gamma) Stretching: It allows you to control the degree of stretching using a parameter called the gamma value. A higher gamma value increases the contrast in brighter areas, while a lower gamma value increases contrast in darker areas.


   - Histogram Equalization: This technique redistributes the pixel values in such a way that the cumulative distribution function of the image becomes more uniform. It can enhance local contrast and reveal fine details.


Nonlinear contrast stretching methods are often preferred when specific image features need to be emphasized or when there are non-uniform lighting conditions in the image. The choice between linear and nonlinear stretching depends on the characteristics of the image and the objectives of the analysis in remote sensing applications.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

Disaster Risk

Disaster Risk