Skip to main content

UGC NET Geography 1

The north-pole lies with in the Arctic Ocean whereas south-pole is located within Antartic Continent. Which of the following theory uses this phenomenon as a supportive argument ? 

(A) Theory of Isostasy
(B) Theory of Plate Tectonics
(C) Convective Current Theory
(D) Tetrahedral Theory

The answer is **(B) Theory of Plate Tectonics**.

The theory of plate tectonics states that the Earth's surface is made up of a number of large plates that are constantly moving. The North Pole lies within the Arctic Ocean because the Arctic Ocean is located on a plate that is moving away from the North Pole. The South Pole, on the other hand, is located within Antarctica because Antarctica is a continent that is not moving.

The other theories listed are not supportive of this phenomenon. The theory of isostasy states that the Earth's crust is balanced by the underlying mantle, so the North Pole would not be located in an ocean if this theory were correct. The theory of convective current theory states that the Earth's mantle is heated from below and that this heat causes the mantle to move, but this theory does not explain why the North Pole is located in an ocean and the South Pole is located on a continent. The tetrahedral theory is not a scientific theory and is not supported by evidence.

**Explanation of other theories:**

* **Theory of Isostasy** states that the Earth's crust is balanced by the underlying mantle. This means that the weight of the crust is supported by the mantle, so the crust does not sink into the mantle. The North Pole is located in an ocean because the crust in this area is relatively thin. The mantle is therefore able to push up the crust, creating an ocean.

* **Theory of Convective Current Theory** states that the Earth's mantle is heated from below and that this heat causes the mantle to move. The mantle is a layer of hot, solid rock that lies below the Earth's crust. The heat from the Earth's core causes the mantle to move in a convective current. This means that the mantle is constantly circulating, with hot material rising to the surface and cooler material sinking to the bottom. The convective current theory does not explain why the North Pole is located in an ocean and the South Pole is located on a continent.

* **Tetrahedral Theory** is not a scientific theory and is not supported by evidence. This theory states that the Earth is shaped like a tetrahedron, with the North Pole at one point of the tetrahedron and the South Pole at another point. The theory also states that the Earth's crust is made up of four plates that are constantly moving. However, there is no scientific evidence to support this theory.

Therefore, the theory of plate tectonics is the best explanation for why the North Pole lies within the Arctic Ocean and the South Pole is located within Antarctica.

🌍


Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...