Skip to main content

Landslide

    1. Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity.

    2. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities.

    3. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material.

    4. Debris flows and rock falls are common types of landslides.

    5. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis.

    6. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope.

    7. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion. 

    8. There are four main types of movement: falls, topples, slides (rotational and translational), and flows.

    9. Landslides can involve just one of these movements or a combination of several.

    10. Geologists also consider the type of material involved in the movement, such as rock, debris, or earth.

    11. Falls are landslides that involve the collapse of material from a cliff or steep slope.

    12. Falls usually involve a mixture of free fall through the air, bouncing, or rolling.

    13. Topple failures involve the forward rotation and movement of a mass of rock, earth, or debris out of a slope.

    14. A topple often results in the formation of a debris cone at the base of the slope, called a talus cone.

    15. A slide-type landslide is a downslope movement of material that occurs along a distinctive rupture or slip surface.

    16. The slip surface in a slide-type landslide tends to be deeper than that of other types of landslides and not structurally controlled.

    17. Slides can be either rotational or translational in nature.

    18. Rotational slides occur when the slip surface is listric (curved or spoon-shaped).

    19. Translational slides occur along a distinctive planar surface of weakness such as a fault, joint, or bedding plane.

    20. Flows are landslides that involve the movement of material down a slope in the form of a fluid.

    21. Different types of flows include mud, debris, and rock (rock avalanches. 

Comments

Popular posts from this blog

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...