Skip to main content

gis data continuous and discrete

  • Discrete GIS data refers to geographic data that only exists in specific locations, rather than being continuous across an entire area.


  • Discrete data is characterized by having well-defined boundaries, particularly for polygon data. This means that the data is constrained within certain limits and does not extend indefinitely.


  • Examples of discrete GIS data include point and line data, such as the location of trees, rivers, and streets. These data types are inherently discrete because they occur at specific locations and are not continuous across the landscape.


  • Discrete GIS data can be contrasted with continuous GIS data, which is data that varies smoothly across space without any well-defined boundaries. An example of continuous data might be temperature or elevation measurements.


  • Discrete GIS data is particularly useful for mapping specific features, such as infrastructure or natural resources, that are present in limited, specific locations. By contrast, continuous data is more useful for identifying patterns and trends across a larger area.


  • Discrete GIS data can be represented in various ways, including as points, lines, and polygons, depending on the nature of the data and the purpose of the mapping. For example, roads might be represented as lines, while individual trees might be represented as points.

  • Continuous GIS data is geographic data that varies smoothly across space without any well-defined boundaries, in contrast to discrete data which is constrained to specific locations.


  • Examples of continuous GIS data include elevation, slope, temperature, precipitation, and other environmental or climatic measurements that vary continuously across the landscape.


  • Every point on a map made with continuous GIS data will contain a value, indicating the value of the measured variable at that location.


  • Unlike discrete data, which has well-defined boundaries, continuous data is characterized by a lack of clear limits or borders between different values. Instead, the values vary smoothly across space, with no abrupt changes or discontinuities.


  • Continuous GIS data is particularly useful for identifying patterns and trends across a larger area, such as mapping the distribution of rainfall or temperature across a region.


  • Continuous data can be contrasted with discrete GIS data, which is data that only exists in specific locations and is characterized by well-defined boundaries.


  • Continuous GIS data can be represented in various ways, including as contour lines, heat maps, and color-coded surfaces, depending on the nature of the data and the purpose of the mapping.


  • GIS analysts use various tools and methods to process, analyze, and visualize continuous GIS data, including statistical methods, interpolation, and spatial analysis techniques.

  • Most ArcGIS applications use discrete geographic information, which is characterized by well-defined boundaries and specific locations. Examples include landownership, soils classification, zoning, and land use.


  • Discrete data is typically represented by nominal, ordinal, interval, and ratio values, depending on the nature of the data and the level of measurement.


  • Nominal data is data that cannot be ranked or ordered, such as landownership or soil type. Ordinal data is data that can be ranked, but the differences between the values are not necessarily equal, such as zoning categories.


  • Interval data is data where the differences between values are meaningful and can be measured, but there is no true zero point, such as temperature measurements. Ratio data is data where there is a true zero point, such as weight or height.


  • Surfaces, on the other hand, are continuous data that vary smoothly across space without any well-defined boundaries. Examples of surfaces include elevation, rainfall, pollution concentration, and water tables.


  • Continuous data can be represented in various ways, such as contour lines, heat maps, and color-coded surfaces, depending on the nature of the data and the purpose of the mapping.


  • GIS analysts use various tools and methods to process, analyze, and visualize both discrete and continuous GIS data, including statistical methods, interpolation, and spatial analysis techniques. 

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du cholĂ©ra dans Paris et le dĂ©partement de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...