Skip to main content

Earthquake. Terminology and Concept

Earthquake

It is a transient violent movement of the Earth's surface that follows a release of energy in the Earth's crust.


2. Magnitude

It is a measure of the amount of energy released during an earthquake and expressed by Richter scale.


Effect of earthquake according to Richter scale.

Richter Magnitude Earthquake effects

Less than 3.5 Generally not felt, but recorded.

3.5-5.4 Often felt, but rarely causes damage.

Under 6.0 At most, slight damage to well-designed buildings. Can cause major damage to poorly constructed buildings over small regions.

6.1-6.9 Can be destructive in areas up to about 100 across where people live.

7.0-7.9 Major earthquake. Can cause serious damage over larger areas.

8 or greater Great Earthquake. Can cause serious damage in areas several hundred across.

3. Intensity

Intensity is a qualitative measure of the actual shaking at a location during an Earthquake, and is assigned in Roman Capital Numerical. It refers to the effects of earthquakes. Modified Mercalli scale is the standard measurement.


The intensity scale is based on the features of shaking, perception by people and animals, performance of buildings, and changes to natural surroundings.


Effects of earthquake based on its intensity

Intensity. Earthquake effects

I People do not feel any Earth movement

II A few people might notice movement if they are at rest and/or on the upper floors of tall buildings

III Many people indoors feel the movement. Hanging objects swing back and forth. People outdoors might not realize that an earthquake is occurring

IV Again, most people indoors feel the movement. The earthquake feels like a heavy truck hitting the walls. A few people outdoors may feel the movement as well.

V Almost everyone feels the movement. Sleeping people are awakened. Doors swing open or close. Dishes are broken. Trees might shake.

VI Everyone feels the movement. People have trouble walking. Objects fall from shelves. Damage is slight in poorly built buildings. No structural damage.

VII People have difficulty standing. Drivers feel their cars shaking. Some furniture breaks. Loose bricks fall from buildings.

VIII Drivers have trouble steering. Tall structures such as chimneys might twist and fall. Well-built buildings suffer slight damage. Poorly built structures suffer severe damage.

IX Well-built buildings suffer considerable damage. Some underground pipes are broken. The ground cracks. Reservoirs suffer serious damage.

X Most buildings and their foundations are destroyed. Some bridges are destroyed. Dams are seriously damaged. Large landslides occur. The ground cracks in large areas. Railroad tracks are bent slightly.

XI Most buildings collapse. Some bridges are destroyed. Large cracks appear in the ground. Underground pipelines are destroyed. Railroad tracks are badly bent.

XII Almost everything is destroyed. Objects are thrown into the air. The ground moves in waves or ripples. Large amounts of rock may move.


4. Focus or hypocenter

It is the point within the earth where an earthquake rupture starts


5. Epicenter

It is the point on the earth's surface vertically above the hypocenter, point in the crust.


6. Body waves

They move through the interior of the earth, as opposed to surface waves that ravel near the earth's surface.


6.1 P wave

A P wave, or compressional wave, the ground back and forth in the same direction and the opposite direction in the direction the wave is moving.


6.2 S wave

An S wave, or shear wave, shakes the ground back and forth perpendicular to the direction the wave is moving. S wave can travel only through solids.


7. Shallow Focus Earthquake

Earthquakes of focus less than 70 km deep from ground surface are called shallow focus earthquakes.


8. Teleseism

A teleseism is an earthquake recorded by a seismograph at a distance. By international convention the distance is over 1000 Kilometers from the epicenter.


 9. Microseism

These are more or less continuous disturbances in the ground recorded by seismographs.


10. Micro earthquake

A very small earthquake having a magnitude measurable less than three on scale is called a Micro-earthquake.


11. Accelerogram

The ground acceleration record produced by Accelerograph is called Accelerogram.


12. Accelerograph

This is an earthquake-recording device designed to measure the ground motion in terms of acceleration in the epicentral region of strong shaking.


13. Focal distance

The straight-line distance between the places of recording/observation to the hypocenter is called the focal distance.


14. Intermediate Focus Earthquake

When the focus of an Earthquake is between 70 to 300 km deep it is termed as Intermediate Focus Earthquake.


15. Epicentral Distance

Distance between epicenter and recording station(in km) is termed as Epicentral Distance.


16. Foreshocks

Smaller earthquakes preceding the main earthquake results in the generation of Foreshocks.


17. Aftershocks

Smaller earthquakes following the main earthquake results in the development of aftershocks.


18. Benioff zone

A region of earthquake activity inclined at an angle underneath a destructive boundary.


19. Destructive boundary

A part of the earth's crust where tectonic plates move towards one another, resulting in the seduction of one below the other.


20. Fault

A fracture in the rocks along which strain is occasionally released as an earthquake.


21. Active fault

Faults considered to be active if they have moved one or more time in the 10000 years.


22. Liquefaction

The process by which sediments and soil collapse, behaving like a thick liquid when shaken by earthquake waves.


23. Magnitude/frequency relationship

The observed relationship (with most hazards) that bigger scale events occur less frequently while smaller scale events are relatively common.


24. Richter scale

A measure of earthquake magnitude allowing an estimate of energy levels involved.


25. Rossi-Forrel scale

An observational scale for measuring earthquake intensity. This was improved and expanded by Mercalli to produce the "Modified Mercalli Scale".


26. Seismometer

An instrument for detecting and recording earthquake waves.


27. Seismograph

A printout from a seismometer. Studies of seismograph traces can be used to pinpoint both the epicenter of an earthquake and the nature of the fault movement.


28. Tsunami

An earthquake generated sea wave. Can travel thousands of miles and reach many metres in height when approaching shallow water.


Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil

Landslide

Landslides are a type of "mass wasting," where soil and rock move down-slope due to gravity. Landslides can be caused by a combination of factors, such as rainfall, snowmelt, changes in water level, and human activities. There are five modes of slope movement, including falls, topples, slides, spreads, and flows, which vary depending on the type of geologic material. Debris flows and rock falls are common types of landslides. Landslides can also occur underwater, known as submarine landslides, and sometimes cause tsunamis. Landslides occur when down-slope forces exceed the strength of the earth materials that compose the slope. Slopes already on the verge of movement are more susceptible to landslides, which can be induced by earthquakes, volcanic activity, and stream erosion.  There are four main types of movement: falls, topples, slides (rotational and translational), and flows. Landslides can involve just one of these movements or a combination of several. Geologists also

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF)

Disaster Management Act, 2005. National Disaster Management Framework (NDMF) National Disaster Management Authority (NDMA). National Institute of Disaster Management (NIDM). National Disaster Response Force (NDRF) The National Disaster Management Framework (NDMF) in India is a comprehensive policy document that provides a framework for managing disasters in the country. The framework was first introduced in 2005 and was updated in 2019. The NDMF is based on the principle of an integrated approach to disaster management. It aims to bring together all stakeholders, including the government, non-governmental organizations (NGOs), civil society, and the private sector, to work towards a common goal of disaster management. The framework is designed to address all phases of disaster management, including prevention, preparedness, response, and recovery. It provides guidelines for various aspects of disaster management, including risk assessment, disaster planning, early warning systems, sear

Disaster Management. Geography of Disaster Management.

Disaster management refers to the process of preparing for, responding to, and recovering from disasters or emergencies that may affect communities, regions, or entire countries. It involves the coordination of various activities and efforts by government agencies, non-governmental organizations, and other stakeholders to minimize the impact of disasters and promote the well-being of affected populations. The process of disaster management can be broken down into four phases: Mitigation: This involves taking steps to reduce the risk of disasters, such as identifying and addressing potential hazards, developing emergency plans, and improving infrastructure and systems. Preparedness: This involves preparing for the possibility of a disaster, such as training emergency responders, conducting drills and exercises, and stockpiling necessary supplies. Response: This involves taking immediate action during and immediately after a disaster, such as rescuing people, providing emergency medical