Skip to main content

Slowly Flooding History. Landsat #NASA #USGS #Earth

Slowly Flooding History

One of the oldest continuously inhabited settlements in the world, Hasankeyf, has been home to more than 20 cultures over the past 12,000 years. Assyrians carved caves into the surrounding limestone cliffs. Romans built a fortress to monitor crop and livestock transportation. Travelers on the Silk Road often stopped in the area to trade during the Middle Ages.

Remnants of past cultures have been preserved for thousands of years in Hasankeyf, which was absorbed by the Ottoman Empire in the 1500s and has remained part of Turkey ever since. But those artifacts—thousands of human-made caves and hundreds of well-preserved medieval monuments—may soon be underwater. A new dam and reservoir threatens to drown the city.

Located about 56 kilometers (35 miles) downstream of Hasankeyf, the 138-meter (453-foot) tall Ilisu Dam is expected to provide 1,200 megawatts of electricity (around 1.5 percent of Turkey's total power-generating capacity). The dam is part of Turkey's Southeastern Anatolia Project, which consists of 19 hydroelectric plants and 22 dams on the Tigris and Euphrates Rivers. The effort is designed to help promote economic growth and energy independence for the country. But there will also be a cost.

Holding back water from the Tigris River, Ilisu Dam will create a reservoir covering 190 square kilometers (121 square miles) of land. When near capacity, the reservoir will almost completely submerge Hasankeyf and displace more than 80,000 people. Additionally, the dam will decrease water supplies to Syria and Iraq.

The natural-color images above show Hasankeyf on February 22, 2019 (left) and March 12, 2020 (right). The images below show the area near Ilisu Dam (located further downstream) on the same dates. The reservoir began filling in July 2019. These images were acquired by the Operational Land Imager (OLI) on Landsat 8.

As of February 2020, water levels behind the dam were rising at a rate of about 15 centimeters (6 inches) per day. The reservoir is only about one quarter full and is expected to rise another 50 meters (160 feet) in upcoming months—enough to submerge thousands of nearby caves and nearly all of the Hasankeyf fortress previously occupied by the Romans, Mongols, and Seljuk Turks.

Some historical structures (including a tomb, mosque, and ancient bath) and all residents have been relocated to a new town on a nearby hill called New Hasankeyf (or Yeni Hasankeyf). Once the reservoir is full, a ferry system will shuttle people between the new town and what remains above water in Hasankeyf.

NASA Earth Observatory images by Lauren Dauphin, using Landsat data from the U.S. Geological Survey.

Read More at:


and/or


#Landsat #NASA #USGS #Earth





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Accuracy Assessment

Accuracy assessment is the process of checking how correct your classified satellite image is . 👉 After supervised classification, the satellite image is divided into classes like: Water Forest Agriculture Built-up land Barren land But classification is done using computer algorithms, so some areas may be wrongly classified . 👉 Accuracy assessment helps to answer this question: ✔ "How much of my classified map is correct compared to real ground conditions?"  Goal The main goal is to: Measure reliability of classified maps Identify classification errors Improve classification results Provide scientific validity to research 👉 Without accuracy assessment, a classified map is not considered scientifically reliable . Reference Data (Ground Truth Data) Reference data is real-world information used to check classification accuracy. It can be collected from: ✔ Field survey using GPS ✔ High-resolution satellite images (Google Earth etc.) ✔ Existing maps or survey reports 🧭 Exampl...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Development and scope of Environmental Geography and Recent concepts in environmental Geography

Environmental Geography studies the relationship between humans and nature in a spatial (place-based) way. It combines Physical Geography (natural processes) and Human Geography (human activities). A. Early Stage 🔹 Environmental Determinism Concept: Nature controls human life. Meaning: Climate, landforms, and soil decide how people live. Example: People in deserts (like Sahara Desert) live differently from people in fertile river valleys. 🔹 Possibilism Concept: Humans can modify nature. Meaning: Environment gives options, but humans make choices. Example: In dry areas like Rajasthan, people use irrigation to grow crops. 👉 In this stage, geography was mostly descriptive (explaining what exists). B. Evolution Stage (Mid-20th Century) Environmental problems increased due to: Industrialization Urbanization Deforestation Pollution Geographers started studying: Environmental degradation Resource management Human impact on ecosystems The field became analytical and problem-solving...

GIS: Real World and Representations - Modeling and Maps

Geographic Information Systems (GIS) serve as a bridge between the real world and digital representations of geographic phenomena. These representations allow users to store, analyze, and visualize spatial data for informed decision-making. Two key aspects of GIS in this context are modeling and maps , both of which are used to represent real-world geographic features and phenomena in a structured, analyzable format. Let's delve into these concepts, terminologies, and examples in detail. 1. Real World and Representations in GIS Concept: The real world comprises physical, tangible phenomena, such as landforms, rivers, cities, and infrastructure, as well as more abstract elements like weather patterns, population densities, and traffic flow. GIS allows us to represent these real-world phenomena digitally, enabling spatial analysis, decision-making, and visualization. The representation of the real world in GIS is achieved through various models and maps , which simplify...