Skip to main content

Slowly Flooding History. Landsat #NASA #USGS #Earth

Slowly Flooding History

One of the oldest continuously inhabited settlements in the world, Hasankeyf, has been home to more than 20 cultures over the past 12,000 years. Assyrians carved caves into the surrounding limestone cliffs. Romans built a fortress to monitor crop and livestock transportation. Travelers on the Silk Road often stopped in the area to trade during the Middle Ages.

Remnants of past cultures have been preserved for thousands of years in Hasankeyf, which was absorbed by the Ottoman Empire in the 1500s and has remained part of Turkey ever since. But those artifacts—thousands of human-made caves and hundreds of well-preserved medieval monuments—may soon be underwater. A new dam and reservoir threatens to drown the city.

Located about 56 kilometers (35 miles) downstream of Hasankeyf, the 138-meter (453-foot) tall Ilisu Dam is expected to provide 1,200 megawatts of electricity (around 1.5 percent of Turkey's total power-generating capacity). The dam is part of Turkey's Southeastern Anatolia Project, which consists of 19 hydroelectric plants and 22 dams on the Tigris and Euphrates Rivers. The effort is designed to help promote economic growth and energy independence for the country. But there will also be a cost.

Holding back water from the Tigris River, Ilisu Dam will create a reservoir covering 190 square kilometers (121 square miles) of land. When near capacity, the reservoir will almost completely submerge Hasankeyf and displace more than 80,000 people. Additionally, the dam will decrease water supplies to Syria and Iraq.

The natural-color images above show Hasankeyf on February 22, 2019 (left) and March 12, 2020 (right). The images below show the area near Ilisu Dam (located further downstream) on the same dates. The reservoir began filling in July 2019. These images were acquired by the Operational Land Imager (OLI) on Landsat 8.

As of February 2020, water levels behind the dam were rising at a rate of about 15 centimeters (6 inches) per day. The reservoir is only about one quarter full and is expected to rise another 50 meters (160 feet) in upcoming months—enough to submerge thousands of nearby caves and nearly all of the Hasankeyf fortress previously occupied by the Romans, Mongols, and Seljuk Turks.

Some historical structures (including a tomb, mosque, and ancient bath) and all residents have been relocated to a new town on a nearby hill called New Hasankeyf (or Yeni Hasankeyf). Once the reservoir is full, a ferry system will shuttle people between the new town and what remains above water in Hasankeyf.

NASA Earth Observatory images by Lauren Dauphin, using Landsat data from the U.S. Geological Survey.

Read More at:


and/or


#Landsat #NASA #USGS #Earth





Vineesh V
Assistant Professor of Geography,
Directorate of Education,
Government of Kerala.
https://g.page/vineeshvc

Comments

Popular posts from this blog

Artisan Wells Basins

Artisan Wells and Basins Artesian wells are a type of well that harnesses the natural pressure of water trapped underground to force water to the surface without pumping. This phenomenon occurs in specific geological formations known as artesian basins . Key Terminologies and Concepts Aquifer: A geological formation that can store and transmit water. It is typically made up of porous rocks or sediments like sandstone or gravel. Confined Aquifer: An aquifer that is sandwiched between two impermeable layers (like clay or shale) that prevent water from escaping. Artesian Basin: A geological structure where a confined aquifer is tilted and has a recharge area at a higher elevation than the discharge area. This creates a pressure gradient that forces water to flow upwards. Potentiometric Surface: The theoretical level to which water would rise in a well drilled into an artesian aquifer if there were no restrictions. It is determined by the pressure head in the aquifer. Flowing Artesian

Groundwater – Porosity and Permeability

Groundwater refers to the water that resides beneath the Earth's surface in the pores and crevices of rock, sediment, and soil. Two key properties that influence the movement and storage of groundwater are porosity and permeability: 1. Porosity:    - Definition: Porosity refers to the volume percentage of void spaces (pores or openings) in a geological material, such as soil or rock.    - Role: Porosity determines how much water a subsurface material can hold. It is a measure of the material's capacity to store water.    - Factors: Porosity is influenced by the size and arrangement of particles within the material. Highly porous materials have more void spaces, while less porous materials have fewer.    - Units: Porosity is expressed as a percentage, with 0% indicating complete solidity (no pore spaces) and 100% indicating complete void space. 2. Permeability:    - Definition: Permeability refers to the ability of a geological material to transmit fluids, such as water. It meas

Water harvesting

Water harvesting 

Aquifer

  1. Aquifers:    - Definition: Aquifers are rocks and soils that possess both porosity and permeability.    - Porosity: Refers to the presence of open spaces (pores) within the material.    - Permeability: Indicates the ability of the material to transmit fluids (water, in this context) through those pores. 2. Aquicludes:    - Definition: Aquicludes are rocks and soils that have porosity but lack permeability.    - Porosity: They contain open spaces, but...    - Permeability: ...are not conducive to the easy movement of fluids due to the lack of interconnected pathways. 3. Aquitards:    - Definition: Aquitards have porosity, but their permeability is limited.    - Porosity: They have open spaces...    - Limited Permeability: ...yet the movement of fluids is slower or restricted compared to aquifers due to lower permeability. 4. Aquifuge:    - Definition: Aquifuge rocks and soils have neither porosity nor permeability.    - No Porosity: They lack open spaces for water to be stored...  

Water Table

Water Table, Saturated and Unsaturated Zones, Perched Water Table, and Springs Water Table Definition: The upper surface of the saturated zone in an aquifer. Fluctuations: The water table can fluctuate due to factors like precipitation, groundwater extraction, and seasonal changes. Importance: It determines the availability of groundwater for wells and other sources. Saturated and Unsaturated Zones Saturated Zone: The area below the water table where all the pores and spaces in the rock or sediment are filled with water. Unsaturated Zone: The area above the water table where the pores and spaces contain both water and air. This zone is also known as the vadose zone. Perched Water Table Definition: A localized water table that occurs above the main water table due to a lens of impermeable material within the unsaturated zone. Formation: Perched water tables often form in areas with lenses of clay or other impermeable materials. Impact: Perched water tables can create localize