Skip to main content

GRADUATE RESEARCH ASSISTANTSHIP IN SPATIAL VARIABILITY – CROP YIELD RELATIONSHIPS - University of Nebraska-Lincoln

GRADUATE RESEARCH ASSISTANTSHIP IN SPATIAL VARIABILITY – CROP YIELD RELATIONSHIPS - University of Nebraska-Lincoln

The University of Nebraska-Lincoln (UNL) invites applications for an MS or PhD graduate research assistantship. The candidate in this assistantship will support work to improve an understanding of spatial variability underlying crop yields and associated producer profitability. Specifically the student will investigate the relationship of the National Commodity Crop Productivity Index (NCCPI), an index in the SSURGO database, to crop yields in Nebraska. These efforts will provide a research-based assessment of the ability of the NCCPI to predict crop  yields in Nebraska. The selected candidate will join a collaborative research team involving faculty in Spatial Sciences (Dr. Yi Qi; https://www.qispatial.com/), Cropping Systems (Dr. Andrea Basche; https://agronomy.unl.edu/basche-research), and Applied Wildlife Ecology (Dr. Andrew Little; https://wildlifeecologylab.unl.edu/).

Responsibilities for the student will include:
·                      Data collection, organization, and analysis of relevant field-scale yield data
·                      Evaluate the spatial relationship of crop yields to the National Commodity Crop Productivity Index (NCCPI)
·                      Conduct spatial analysis and quantitative data analysis to identify hotspots of marginal or less productive regions and mapping their relationship to the NCCPI
·                      Develop map products to allow for visualization and interpretation of results

Qualifications: Applicants must have completed a minimum of a Bachelor of Science degree in a field related Geographical Information Systems, Remote Sensing, and Data Analytics. Applicants should have a GPA ≥3.0. Applicants also should have strong quantitative skills (e.g., correlation analysis, regression analysis) and organizational skills, attention to detail, and excellent oral and written communication skills. Preference will be given to applicants with prior experience or training with GIS (e.g., Esri ArcGIS develop and ArcGIS online), Remote Sensing (e.g., ENVI) or similar software.

GRA Stipend: Starting salary $22,000 for M.S. or $24,000 for Ph.D.
Tuition Waiver: A tuition waiver of up to 12 credit hours per semester and 6-12 credit hours during summer sessions (depending on previous enrollment) is provided with the GRA.
Health Insurance: Students on assistantships are provided health insurance at a reduced rate. 
GRA Availability: Summer or Fall 2020

Application: To be considered for this position, please send a cover letter outlining your interests, research background, and career aspirations as they pertain to this position; a resume or curriculum vitae; copies of transcripts (unofficial); unofficial copies of GRE scores; and contact information for 3 professional references (name, email, phone, address) combined in a single PDF file with the file name formatted as lastname_firstname to Dr. Yi Qi (yi.qi@unl.edu). Review of applications will begin immediately and the position will remain open until filled.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Disaster Risk

Disaster Risk 

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...