Skip to main content

GRADUATE RESEARCH ASSISTANTSHIP IN SPATIAL VARIABILITY – CROP YIELD RELATIONSHIPS - University of Nebraska-Lincoln

GRADUATE RESEARCH ASSISTANTSHIP IN SPATIAL VARIABILITY – CROP YIELD RELATIONSHIPS - University of Nebraska-Lincoln

The University of Nebraska-Lincoln (UNL) invites applications for an MS or PhD graduate research assistantship. The candidate in this assistantship will support work to improve an understanding of spatial variability underlying crop yields and associated producer profitability. Specifically the student will investigate the relationship of the National Commodity Crop Productivity Index (NCCPI), an index in the SSURGO database, to crop yields in Nebraska. These efforts will provide a research-based assessment of the ability of the NCCPI to predict crop  yields in Nebraska. The selected candidate will join a collaborative research team involving faculty in Spatial Sciences (Dr. Yi Qi; https://www.qispatial.com/), Cropping Systems (Dr. Andrea Basche; https://agronomy.unl.edu/basche-research), and Applied Wildlife Ecology (Dr. Andrew Little; https://wildlifeecologylab.unl.edu/).

Responsibilities for the student will include:
·                      Data collection, organization, and analysis of relevant field-scale yield data
·                      Evaluate the spatial relationship of crop yields to the National Commodity Crop Productivity Index (NCCPI)
·                      Conduct spatial analysis and quantitative data analysis to identify hotspots of marginal or less productive regions and mapping their relationship to the NCCPI
·                      Develop map products to allow for visualization and interpretation of results

Qualifications: Applicants must have completed a minimum of a Bachelor of Science degree in a field related Geographical Information Systems, Remote Sensing, and Data Analytics. Applicants should have a GPA ≥3.0. Applicants also should have strong quantitative skills (e.g., correlation analysis, regression analysis) and organizational skills, attention to detail, and excellent oral and written communication skills. Preference will be given to applicants with prior experience or training with GIS (e.g., Esri ArcGIS develop and ArcGIS online), Remote Sensing (e.g., ENVI) or similar software.

GRA Stipend: Starting salary $22,000 for M.S. or $24,000 for Ph.D.
Tuition Waiver: A tuition waiver of up to 12 credit hours per semester and 6-12 credit hours during summer sessions (depending on previous enrollment) is provided with the GRA.
Health Insurance: Students on assistantships are provided health insurance at a reduced rate. 
GRA Availability: Summer or Fall 2020

Application: To be considered for this position, please send a cover letter outlining your interests, research background, and career aspirations as they pertain to this position; a resume or curriculum vitae; copies of transcripts (unofficial); unofficial copies of GRE scores; and contact information for 3 professional references (name, email, phone, address) combined in a single PDF file with the file name formatted as lastname_firstname to Dr. Yi Qi (yi.qi@unl.edu). Review of applications will begin immediately and the position will remain open until filled.

Comments

Popular posts from this blog

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...