Skip to main content

GRADUATE RESEARCH ASSISTANTSHIP IN SPATIAL VARIABILITY – CROP YIELD RELATIONSHIPS - University of Nebraska-Lincoln

GRADUATE RESEARCH ASSISTANTSHIP IN SPATIAL VARIABILITY – CROP YIELD RELATIONSHIPS - University of Nebraska-Lincoln

The University of Nebraska-Lincoln (UNL) invites applications for an MS or PhD graduate research assistantship. The candidate in this assistantship will support work to improve an understanding of spatial variability underlying crop yields and associated producer profitability. Specifically the student will investigate the relationship of the National Commodity Crop Productivity Index (NCCPI), an index in the SSURGO database, to crop yields in Nebraska. These efforts will provide a research-based assessment of the ability of the NCCPI to predict crop  yields in Nebraska. The selected candidate will join a collaborative research team involving faculty in Spatial Sciences (Dr. Yi Qi; https://www.qispatial.com/), Cropping Systems (Dr. Andrea Basche; https://agronomy.unl.edu/basche-research), and Applied Wildlife Ecology (Dr. Andrew Little; https://wildlifeecologylab.unl.edu/).

Responsibilities for the student will include:
·                      Data collection, organization, and analysis of relevant field-scale yield data
·                      Evaluate the spatial relationship of crop yields to the National Commodity Crop Productivity Index (NCCPI)
·                      Conduct spatial analysis and quantitative data analysis to identify hotspots of marginal or less productive regions and mapping their relationship to the NCCPI
·                      Develop map products to allow for visualization and interpretation of results

Qualifications: Applicants must have completed a minimum of a Bachelor of Science degree in a field related Geographical Information Systems, Remote Sensing, and Data Analytics. Applicants should have a GPA ≥3.0. Applicants also should have strong quantitative skills (e.g., correlation analysis, regression analysis) and organizational skills, attention to detail, and excellent oral and written communication skills. Preference will be given to applicants with prior experience or training with GIS (e.g., Esri ArcGIS develop and ArcGIS online), Remote Sensing (e.g., ENVI) or similar software.

GRA Stipend: Starting salary $22,000 for M.S. or $24,000 for Ph.D.
Tuition Waiver: A tuition waiver of up to 12 credit hours per semester and 6-12 credit hours during summer sessions (depending on previous enrollment) is provided with the GRA.
Health Insurance: Students on assistantships are provided health insurance at a reduced rate. 
GRA Availability: Summer or Fall 2020

Application: To be considered for this position, please send a cover letter outlining your interests, research background, and career aspirations as they pertain to this position; a resume or curriculum vitae; copies of transcripts (unofficial); unofficial copies of GRE scores; and contact information for 3 professional references (name, email, phone, address) combined in a single PDF file with the file name formatted as lastname_firstname to Dr. Yi Qi (yi.qi@unl.edu). Review of applications will begin immediately and the position will remain open until filled.

Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces