Skip to main content

GRADUATE RESEARCH ASSISTANTSHIP IN SPATIAL VARIABILITY – CROP YIELD RELATIONSHIPS - University of Nebraska-Lincoln

GRADUATE RESEARCH ASSISTANTSHIP IN SPATIAL VARIABILITY – CROP YIELD RELATIONSHIPS - University of Nebraska-Lincoln

The University of Nebraska-Lincoln (UNL) invites applications for an MS or PhD graduate research assistantship. The candidate in this assistantship will support work to improve an understanding of spatial variability underlying crop yields and associated producer profitability. Specifically the student will investigate the relationship of the National Commodity Crop Productivity Index (NCCPI), an index in the SSURGO database, to crop yields in Nebraska. These efforts will provide a research-based assessment of the ability of the NCCPI to predict crop  yields in Nebraska. The selected candidate will join a collaborative research team involving faculty in Spatial Sciences (Dr. Yi Qi; https://www.qispatial.com/), Cropping Systems (Dr. Andrea Basche; https://agronomy.unl.edu/basche-research), and Applied Wildlife Ecology (Dr. Andrew Little; https://wildlifeecologylab.unl.edu/).

Responsibilities for the student will include:
·                      Data collection, organization, and analysis of relevant field-scale yield data
·                      Evaluate the spatial relationship of crop yields to the National Commodity Crop Productivity Index (NCCPI)
·                      Conduct spatial analysis and quantitative data analysis to identify hotspots of marginal or less productive regions and mapping their relationship to the NCCPI
·                      Develop map products to allow for visualization and interpretation of results

Qualifications: Applicants must have completed a minimum of a Bachelor of Science degree in a field related Geographical Information Systems, Remote Sensing, and Data Analytics. Applicants should have a GPA ≥3.0. Applicants also should have strong quantitative skills (e.g., correlation analysis, regression analysis) and organizational skills, attention to detail, and excellent oral and written communication skills. Preference will be given to applicants with prior experience or training with GIS (e.g., Esri ArcGIS develop and ArcGIS online), Remote Sensing (e.g., ENVI) or similar software.

GRA Stipend: Starting salary $22,000 for M.S. or $24,000 for Ph.D.
Tuition Waiver: A tuition waiver of up to 12 credit hours per semester and 6-12 credit hours during summer sessions (depending on previous enrollment) is provided with the GRA.
Health Insurance: Students on assistantships are provided health insurance at a reduced rate. 
GRA Availability: Summer or Fall 2020

Application: To be considered for this position, please send a cover letter outlining your interests, research background, and career aspirations as they pertain to this position; a resume or curriculum vitae; copies of transcripts (unofficial); unofficial copies of GRE scores; and contact information for 3 professional references (name, email, phone, address) combined in a single PDF file with the file name formatted as lastname_firstname to Dr. Yi Qi (yi.qi@unl.edu). Review of applications will begin immediately and the position will remain open until filled.

Comments

Popular posts from this blog

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Supervised Classification

In the context of Remote Sensing (RS) and Digital Image Processing (DIP) , supervised classification is the process where an analyst defines "training sites" (Areas of Interest or ROIs) representing known land cover classes (e.g., Water, Forest, Urban). The computer then uses these training samples to teach an algorithm how to classify the rest of the image pixels. The algorithms used to classify these pixels are generally divided into two broad categories: Parametric and Nonparametric decision rules. Parametric Decision Rules These algorithms assume that the pixel values in the training data follow a specific statistical distribution—almost always the Gaussian (Normal) distribution (the "Bell Curve"). Key Concept: They model the data using statistical parameters: the Mean vector ( $\mu$ ) and the Covariance matrix ( $\Sigma$ ) . Analogy: Imagine trying to fit a smooth hill over your data points. If a new point lands high up on the hill, it belongs to that cl...