Skip to main content

ASSISTANT PROFESSOR Vacancy


ASSISTANT PROFESSOR IN 

The Department of Earth Systems Analysis of the Faculty of Geo-information Science and Earth Observation at the University of Twente is looking for an Earth scientist with experience in the assessment of risk of natural hazards to infrastructure and population. The Department of Earth Systems Analysis combines Earth science knowledge with spatial modelling and advanced remote sensing to understand Earth processes in space and time. Our education and research contribute to the sustainable use of energy and Earth resources and help reduce disaster risk and the impact of natural hazards on society.

We are seeking an enthusiastic colleague to complement our existing strengths in natural hazards (Earth structure and dynamics, Hydro-meteorological hazard assessment, Time-variant multi-hazard risks, Climate and disaster resilience, Post disaster damage & recovery assessment). Your tasks will focuses on how to quantity risk of interacting natural hazards for improved disaster risk reduction planning, in a context of changing multi-hazards, exposure and vulnerability, mostly in data scarce environment. You will contribute to the development of methods and tools (Spatial Decision Support System) to quantify multi-hazard risk for gradual changes (e.g. due to climate change), abrupt changes (e.g. after major disasters) and planned changes (risk reduction alternatives). An important component of the work will be to actively participate in project acquisition and execution of externally funded projects related to multi-hazard risk assessment in developing countries.

You also have to:

  • Contribute to the educational programme(s) offered by the department
  • Develop own research in the field of multi-hazard risk modelling, and supervise MSc and PhD students
  • Contribute to the development of the SDSS in terms of architecture, functional specifications, testing, documentation, training and implementing in international projects

YOUR PROFILE

You have:

  • A completed PhD on research related to risk assessment, or about to complete your PhD in the next months.
  • Experience and interest in international projects dealing with the assessment of risk to natural hazards
  • Programming skills and experience with modifying and linking other software tools for hazard and risk assessment.
  • An aptitude for teaching, including lecturing and tutoring at an academic level
  • An affinity with a multi-cultural, post-graduate education environment
  • A willingness to undertake international travel to less developed countries
  • An excellent command of English. Knowledge of, or willingness to learn Dutch, is an advantage.
  • Programming skills the development of software products or components, and experience with the software components mentioned above.


INFORMATION AND APPLICATION

Additional information regarding the position can be obtained from Dr. Cees van Westen (e-mail: c.j.vanwesten@utwente.nl ). You are also invited to visit our homepage.

Please submit your application before 25 January 2020 (choose "apply now" below). Your application has to include (i) a motivation letter clearly stating how you meet the selection criteria and also outlining your research and teaching interests, (ii) a detailed CV with references and (iii) a two-page statement on your vision on research, education and capacity development in relation to ITC, and the position. Applications that do not include all three will not be considered.

A public guest lecture to the ITC-staff can be part of the selection. Because of our diversity values, we do particularly support women and candidates from our target countries and alumni to apply.

OUR OFFER

We offer an inspiring and challenging international environment. You will be initially employed for two years. Extension of the employment after this period is a possibility.

  • Gross monthly salary between € 3545,- and € 4852,- depending on experience and qualifications (job profile Assistant Professor level 2).
  • A holiday allowance of 8% of the gross annual salary and a year-end bonus of 8.3%
  • Excellent support for research and facilities for professional and personal development
  • A solid pension scheme
  • Possibilities to save up holidays for sabbatical leave
  • Minimum of 41 holiday days in case of full-time employment

THE ORGANIZATION

The University of Twente. We stand for life sciences and technology. High tech and human touch. Education and research that matter. New technology which leads change, innovation and progress in society. The University of Twente is the only campus university of the Netherlands; divided over five faculties we provide more than fifty educational programmes. We have a strong focus on personal development and talented researchers are given scope for carrying out groundbreaking research. We are an equal opportunity employer and value diversity at our company.

We do not discriminate on the basis of race, religion, color, national origin, gender, sexual orientation, age, marital status or disability status. Because of our diversity values we do particularly support women to apply.

The Faculty of Geo-Information Science and Earth Observation (ITC) of the University of Twente provides international postgraduate education, research and project services in the field of geo-information science and earth observation using remote sensing and GIS. The aim of ITC's activities is the international exchange of knowledge, focusing on capacity building and institutional development in developing countries and emerging economies.


---------- Forwarded message ---------
From: 🌐Vineesh V🌏Assistant Professor Geography. Directorate of Collegiate Education. GOVT of Kerala. <vineeshvc@gmail.com>
Date: Tue, 17 Dec, 2019, 9:11 AM
Subject: Fully funded Ph.D. opportunities in remote sensing of vegetation - McMaster University, Canada  
To: <vineeshvc.govt@blogger.com>


Fully funded Ph.D. opportunities in remote sensing of vegetation - McMaster University, Canada  

The Remote Sensing Lab at McMaster University (Hamilton, Ontario, Canada) is seeking two motivated and enthusiastic candidates for the Ph.D. program starting in Fall 2020 or earlier.   

The topics include but not limited to:  

(1) Global change (climate and atmospheric composition) impact assessment on terrestrial ecosystem productivity using long-term satellite data records  

(2) Photosynthesis phenology from satellite based solar-induced chlorophyll fluorescence (SIF) records  

(3) Plant structural and photosynthetic traits at Turkey Point Flux Station and/or Borden Forest Research Station  

Students must have MSc in remote sensing, Earth sciences, meteorology, atmospheric science, physics, or related fields, and good programming skills and remote sensing experience.  

Review of the applications will begin immediately. Qualified candidates should submit a CV and copy of their grade transcripts to Prof. Alemu Gonsamo ([gonsamoa@mcmaster.ca](mailto:gonsamoa@mcmaster.ca)).  


Please do not hesitate to contact me through e-mail if you have any questions regarding this position.  Feel free to forward to anyone who may be interested.

Alemu Gonsamo

Comments

Popular posts from this blog

Atmospheric Window

The atmospheric window in remote sensing refers to specific wavelength ranges within the electromagnetic spectrum that can pass through the Earth's atmosphere relatively unimpeded. These windows are crucial for remote sensing applications because they allow us to observe the Earth's surface and atmosphere without significant interference from the atmosphere's constituents. Key facts and concepts about atmospheric windows: Visible and Near-Infrared (VNIR) window: This window encompasses wavelengths from approximately 0. 4 to 1. 0 micrometers. It is ideal for observing vegetation, water bodies, and land cover types. Shortwave Infrared (SWIR) window: This window covers wavelengths from approximately 1. 0 to 3. 0 micrometers. It is particularly useful for detecting minerals, water content, and vegetation health. Mid-Infrared (MIR) window: This window spans wavelengths from approximately 3. 0 to 8. 0 micrometers. It is valuable for identifying various materials, incl

DRA Disaster Risk Assessment

Disaster Risk Assessment (DRA): A Professional Overview Disaster Risk Assessment (DRA) is a systematic process used to identify, analyze, and evaluate the potential hazards, vulnerabilities, and risks posed by disasters to people, property, infrastructure, and the environment. It is a critical tool for effective disaster risk management, enabling communities, organizations, and governments to make informed decisions and implement appropriate mitigation measures. Key Components of DRA Hazard Identification: Identifying the types of hazards that could potentially affect a specific area, such as natural disasters (earthquakes, floods, cyclones), technological disasters (industrial accidents, infrastructure failures), or man-made disasters (conflicts, pandemics). Vulnerability Assessment: Evaluating the susceptibility of people, infrastructure, and the environment to the identified hazards. This involves assessing factors such as location, construction quality, socio-economic co

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis Hazard-Exposure-Vulnerability-Risk (HEVR) Framework: Hazard: A potential event or phenomenon that can cause harm. Exposure: People, assets, or environments in harm's way. Vulnerability: Susceptibility to damage or harm from a hazard. Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability. Risk as a Function: Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure. Reducing any of these factors can decrease overall risk. Types of Hazards: Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes. Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change. Technological hazards: Nuclear accidents, chemical spills. Vulnerability Dimensions: Physical: Infrastructure quality, building codes, location. Social: Age, income, disability, gender, acces