Iso Cluster Classification in Unsupervised Image Classification Iso Cluster Classification is a common unsupervised classification technique used in remote sensing. The "Iso Cluster" algorithm groups pixels with similar spectral characteristics into clusters, or spectral classes, based solely on the data's statistical properties. Unlike supervised classification, Iso Cluster classification doesn't require the analyst to predefine classes or training areas; instead, the algorithm analyzes the image data to find natural groupings of pixels. The analyst interprets these groups afterward to label them with meaningful information classes (e.g., water, forest, urban). How Iso Cluster Classification Works The Iso Cluster algorithm follows several steps to group pixels: Initial Data Analysis : The algorithm examines the entire dataset to understand the spectral distribution of the pixels across the spectral bands. Clustering Process : - The algorithm starts by divid
Focused on advancing knowledge and expertise in Geography, GIS, Remote Sensing, Geographical Data Science, and Analysis, I am deeply committed to teaching and conducting research in these fields. With a keen interest in leveraging data-driven approaches for informed decision-making, I specialize in crafting maps that facilitate effective analysis and interpretation of spatial information. Assistant Professor Of Geography, PG and Research Department of Geography, Government College Chittur