Skip to main content

Vector Data Analysis


GIS vector data analysis involves processing and interpreting geographic features represented as points, lines, and polygons to identify spatial relationships, patterns, and trends. This analysis supports decision-making in urban planning, environmental management, transportation networks, and other spatial applications.


Vector Data Types

Vector data represents discrete spatial features and is ideal for precise location analysis. The three main types are:

  1. Point Data

    • Represents individual locations.
    • Example: Store locations, crime incidents, weather stations.
  2. Line Data

    • Represents linear features with length but no width.
    • Example: Roads, rivers, power lines.
  3. Polygon Data

    • Represents enclosed areas with boundaries.
    • Example: Administrative zones, lakes, land use areas.

Vector Data Attributes

Each vector feature has an associated attribute table, containing descriptive information such as:

  • Population Density (for city polygons)
  • Road Type (for road lines)
  • Land Use Classification (for land use polygons)

 Vector Analysis Techniques

1. Overlay Analysis

  • Combines multiple layers to identify relationships where features overlap.
  • Example: Identifying flood-prone areas by overlaying flood zones and population data.

2. Proximity Analysis

  • Identifies features within a certain distance of another feature.
  • Example: Finding schools within 500 meters of a highway.

3. Buffer Analysis

  • Creates a zone of influence around a feature.
  • Example: Creating a 1 km buffer around a river to identify protected zones.

4. Network Analysis

  • Examines how features are connected within a network.
  • Example: Finding the shortest route between two locations on a road network.

5. Selection by Location

  • Selects features based on their spatial relationship with other features.
  • Example: Selecting all land parcels that intersect with a proposed construction site.

6. Topological Analysis

  • Examines connectivity, adjacency, and containment of spatial features.
  • Example: Ensuring roads properly connect at intersections in a transportation model.

7. Spatial Join

  • Transfers attribute data between spatially related features.
  • Example: Assigning population data to neighborhoods based on census tract polygons.

Vector Analysis Based on Feature Type

1. Point Analysis

  • Objective: Examines individual locations.
  • Example: Identifying crime hotspots by analyzing crime incident locations.

2. Line Analysis

  • Objective: Examines networks and linear features.
  • Example: Finding the most connected road segments in a city.

3. Polygon Analysis

  • Objective: Examines area-based relationships.
  • Example: Calculating total forest area within a national park.

Difference


AspectRaster Data AnalysisVector Data Analysis
Data StructureGrid-based, composed of pixels (cells) with values.Feature-based, composed of points, lines, and polygons.
Data RepresentationRepresents continuous data like elevation, temperature, or land cover.Represents discrete features like roads, buildings, and administrative boundaries.
Spatial PrecisionLess precise due to cell-based structure.Highly precise as features have defined boundaries.
Data SizeLarge file sizes due to high-resolution grids.Smaller file sizes as it stores coordinates and attributes.
Common UsesLand cover classification, terrain analysis, remote sensing, and environmental monitoring.Network analysis, cadastral mapping, site selection, and urban planning.
ExamplesElevation models, satellite imagery, temperature maps.Road networks, property boundaries, utility lines.
Analysis TechniquesLocal, neighborhood, zonal, and global operations.Overlay, proximity, buffer, network, and spatial joins.
Processing SpeedComputationally intensive, especially at high resolution.Faster processing, especially for small datasets.
Attribute StorageStores limited attributes (usually one per cell).Stores multiple attributes in a database format.
SuitabilityBest for continuous and large-scale analysis.Best for discrete, object-based spatial analysis.
  • Raster analysis is ideal for modeling continuous phenomena (e.g., elevation, land cover).
  • Vector analysis is best for analyzing discrete features and relationships (e.g., road networks, property boundaries).

Comments

Popular posts from this blog

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 µm) Near-Infrared – NIR (0.7–1.3 µm) Shortwave Infrared – SWIR (1.3–3.0 µm) Thermal Infrared – TIR (8–14 µm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...

Thermal Sensors in Remote Sensing

Thermal sensors are remote sensing instruments that detect naturally emitted thermal infrared (TIR) radiation from the Earth's surface. Unlike optical sensors (which detect reflected sunlight), thermal sensors measure heat energy emitted by objects because of their temperature. They work mainly in the Thermal Infrared region (8–14 µm) of the electromagnetic spectrum. 1. Thermal Infrared Radiation All objects above 0 Kelvin (absolute zero) emit electromagnetic radiation. This is explained by Planck's Radiation Law . For Earth's surface temperature range (about 250–330 K), the peak emitted radiation occurs in the 8–14 µm thermal window . Thus, thermal sensors detect emitted energy , not reflected sunlight. 2. Emissivity Emissivity is the efficiency with which a material emits thermal radiation. Values range from 0 to 1 : Water, vegetation → high emissivity (0.95–0.99) Bare soil → medium (0.85–0.95) Metals → low (0.1–0.3) E...

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

LiDAR in Remote Sensing

LiDAR (Light Detection and Ranging) is an active remote sensing technology that uses laser pulses to measure distances to the Earth's surface and create high-resolution 3D maps . LiDAR sensors emit short pulses of laser light (usually in the near-infrared range) and measure the time it takes for the pulse to return after hitting an object. Because LiDAR measures distance very precisely, it is excellent for mapping: terrain vegetation height buildings forests coastlines flood plains ✅ 1. Active Sensor LiDAR sends its own laser energy, unlike passive sensors that rely on sunlight. ✅ 2. Laser Pulse LiDAR emits thousands of pulses per second (even millions). Wavelengths commonly used: Near-Infrared (NIR) → land and vegetation mapping Green (532 nm) → water/ bathymetry (penetrates shallow water) ✅ 3. Time of Flight (TOF) The sensor measures the time taken for the laser to travel: from the sensor → to the sur...