Skip to main content

Raster Analysis


Raster analysis is a powerful spatial analysis technique used in GIS to process and interpret grid-based datasets. It is widely applied in fields such as land cover classification, terrain modeling, hydrological studies, environmental monitoring, and spatial decision-making.

How Raster Analysis Works

Raster data is stored in a grid format where each cell (or pixel) represents a specific geographic location and contains a single value. The value can represent elevation, temperature, land cover type, or any other spatially continuous variable.

1. Spatial Resolution

  • The size of each cell in a raster dataset determines the level of detail.
  • Example: A 30m resolution DEM (Digital Elevation Model) means each cell represents a 30m × 30m area.

2. Extent

  • The geographic area covered by a raster dataset.
  • Example: A raster covering an entire country will have a larger extent than one covering a single city.

3. Cell Values and Data Types

  • Continuous Data: Represents smoothly varying phenomena (e.g., elevation, temperature, precipitation).
  • Categorical (Discrete) Data: Represents distinct classes (e.g., land use types, soil types).

Types of Raster Analysis in GIS

1. Overlay Analysis

Combines multiple raster layers to identify spatial relationships.

  • Example: Identifying flood-prone areas by overlaying elevation, rainfall, and land use rasters.

2. Suitability Analysis

Determines the best location for a specific activity based on multiple criteria.

  • Example: Finding a suitable site for a wind farm using layers like wind speed, land use, and proximity to roads.

3. Slope Analysis

Calculates the steepness of terrain from a DEM.

  • Example: Identifying areas with slopes greater than 30° for landslide risk assessment.

4. Aspect Analysis

Determines the direction a slope is facing.

  • Example: Finding south-facing slopes suitable for solar panel installation.

5. Distance Analysis

Measures the distance from a given feature.

  • Example: Mapping areas within 1 km of a river for ecological conservation.

6. Zonal Statistics

Summarizes raster values within defined zones (e.g., administrative boundaries).

  • Example: Calculating average rainfall within different watersheds.

7. Image Classification

Assigns land cover types to satellite images using supervised or unsupervised classification techniques.

  • Example: Classifying Sentinel-2 imagery into urban, forest, water, and agriculture classes.

8. Change Detection

Identifies changes in land cover or other raster datasets over time.

  • Example: Analyzing deforestation by comparing Landsat images from 2000 and 2020.

9. Terrain Analysis

Uses DEMs to derive hydrological and topographical features.

  • Example: Identifying valleys, ridges, and watershed boundaries.

10. Surface Modeling

Creates interpolated surfaces from point data.

  • Example: Generating a temperature surface from scattered weather station data.

Analysis Types Based on Cell Interactions

1. Local Operations (Per-Cell Analysis)

  • Each cell is analyzed independently without considering neighbors.
  • Example: Applying a mathematical function to all cells in a raster (e.g., converting elevation from meters to feet).

2. Neighborhood Operations (Focal Analysis)

  • A cell's value is determined based on surrounding cells.
  • Example: Applying a moving window filter (e.g., smoothing an elevation raster using a 3x3 mean filter).

3. Zonal Operations

  • Groups of cells belonging to the same zone are analyzed collectively.
  • Example: Calculating average elevation within different land use zones.

4. Global Operations

  • The entire raster dataset is used to compute an output.
  • Example: Calculating flow direction for an entire watershed.

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...