Skip to main content

Raster Analysis


Raster analysis is a powerful spatial analysis technique used in GIS to process and interpret grid-based datasets. It is widely applied in fields such as land cover classification, terrain modeling, hydrological studies, environmental monitoring, and spatial decision-making.

How Raster Analysis Works

Raster data is stored in a grid format where each cell (or pixel) represents a specific geographic location and contains a single value. The value can represent elevation, temperature, land cover type, or any other spatially continuous variable.

1. Spatial Resolution

  • The size of each cell in a raster dataset determines the level of detail.
  • Example: A 30m resolution DEM (Digital Elevation Model) means each cell represents a 30m × 30m area.

2. Extent

  • The geographic area covered by a raster dataset.
  • Example: A raster covering an entire country will have a larger extent than one covering a single city.

3. Cell Values and Data Types

  • Continuous Data: Represents smoothly varying phenomena (e.g., elevation, temperature, precipitation).
  • Categorical (Discrete) Data: Represents distinct classes (e.g., land use types, soil types).

Types of Raster Analysis in GIS

1. Overlay Analysis

Combines multiple raster layers to identify spatial relationships.

  • Example: Identifying flood-prone areas by overlaying elevation, rainfall, and land use rasters.

2. Suitability Analysis

Determines the best location for a specific activity based on multiple criteria.

  • Example: Finding a suitable site for a wind farm using layers like wind speed, land use, and proximity to roads.

3. Slope Analysis

Calculates the steepness of terrain from a DEM.

  • Example: Identifying areas with slopes greater than 30° for landslide risk assessment.

4. Aspect Analysis

Determines the direction a slope is facing.

  • Example: Finding south-facing slopes suitable for solar panel installation.

5. Distance Analysis

Measures the distance from a given feature.

  • Example: Mapping areas within 1 km of a river for ecological conservation.

6. Zonal Statistics

Summarizes raster values within defined zones (e.g., administrative boundaries).

  • Example: Calculating average rainfall within different watersheds.

7. Image Classification

Assigns land cover types to satellite images using supervised or unsupervised classification techniques.

  • Example: Classifying Sentinel-2 imagery into urban, forest, water, and agriculture classes.

8. Change Detection

Identifies changes in land cover or other raster datasets over time.

  • Example: Analyzing deforestation by comparing Landsat images from 2000 and 2020.

9. Terrain Analysis

Uses DEMs to derive hydrological and topographical features.

  • Example: Identifying valleys, ridges, and watershed boundaries.

10. Surface Modeling

Creates interpolated surfaces from point data.

  • Example: Generating a temperature surface from scattered weather station data.

Analysis Types Based on Cell Interactions

1. Local Operations (Per-Cell Analysis)

  • Each cell is analyzed independently without considering neighbors.
  • Example: Applying a mathematical function to all cells in a raster (e.g., converting elevation from meters to feet).

2. Neighborhood Operations (Focal Analysis)

  • A cell's value is determined based on surrounding cells.
  • Example: Applying a moving window filter (e.g., smoothing an elevation raster using a 3x3 mean filter).

3. Zonal Operations

  • Groups of cells belonging to the same zone are analyzed collectively.
  • Example: Calculating average elevation within different land use zones.

4. Global Operations

  • The entire raster dataset is used to compute an output.
  • Example: Calculating flow direction for an entire watershed.

Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...