Skip to main content

Raster Analysis


Raster analysis is a powerful spatial analysis technique used in GIS to process and interpret grid-based datasets. It is widely applied in fields such as land cover classification, terrain modeling, hydrological studies, environmental monitoring, and spatial decision-making.

How Raster Analysis Works

Raster data is stored in a grid format where each cell (or pixel) represents a specific geographic location and contains a single value. The value can represent elevation, temperature, land cover type, or any other spatially continuous variable.

1. Spatial Resolution

  • The size of each cell in a raster dataset determines the level of detail.
  • Example: A 30m resolution DEM (Digital Elevation Model) means each cell represents a 30m × 30m area.

2. Extent

  • The geographic area covered by a raster dataset.
  • Example: A raster covering an entire country will have a larger extent than one covering a single city.

3. Cell Values and Data Types

  • Continuous Data: Represents smoothly varying phenomena (e.g., elevation, temperature, precipitation).
  • Categorical (Discrete) Data: Represents distinct classes (e.g., land use types, soil types).

Types of Raster Analysis in GIS

1. Overlay Analysis

Combines multiple raster layers to identify spatial relationships.

  • Example: Identifying flood-prone areas by overlaying elevation, rainfall, and land use rasters.

2. Suitability Analysis

Determines the best location for a specific activity based on multiple criteria.

  • Example: Finding a suitable site for a wind farm using layers like wind speed, land use, and proximity to roads.

3. Slope Analysis

Calculates the steepness of terrain from a DEM.

  • Example: Identifying areas with slopes greater than 30° for landslide risk assessment.

4. Aspect Analysis

Determines the direction a slope is facing.

  • Example: Finding south-facing slopes suitable for solar panel installation.

5. Distance Analysis

Measures the distance from a given feature.

  • Example: Mapping areas within 1 km of a river for ecological conservation.

6. Zonal Statistics

Summarizes raster values within defined zones (e.g., administrative boundaries).

  • Example: Calculating average rainfall within different watersheds.

7. Image Classification

Assigns land cover types to satellite images using supervised or unsupervised classification techniques.

  • Example: Classifying Sentinel-2 imagery into urban, forest, water, and agriculture classes.

8. Change Detection

Identifies changes in land cover or other raster datasets over time.

  • Example: Analyzing deforestation by comparing Landsat images from 2000 and 2020.

9. Terrain Analysis

Uses DEMs to derive hydrological and topographical features.

  • Example: Identifying valleys, ridges, and watershed boundaries.

10. Surface Modeling

Creates interpolated surfaces from point data.

  • Example: Generating a temperature surface from scattered weather station data.

Analysis Types Based on Cell Interactions

1. Local Operations (Per-Cell Analysis)

  • Each cell is analyzed independently without considering neighbors.
  • Example: Applying a mathematical function to all cells in a raster (e.g., converting elevation from meters to feet).

2. Neighborhood Operations (Focal Analysis)

  • A cell's value is determined based on surrounding cells.
  • Example: Applying a moving window filter (e.g., smoothing an elevation raster using a 3x3 mean filter).

3. Zonal Operations

  • Groups of cells belonging to the same zone are analyzed collectively.
  • Example: Calculating average elevation within different land use zones.

4. Global Operations

  • The entire raster dataset is used to compute an output.
  • Example: Calculating flow direction for an entire watershed.

Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Network data model

GIS, a network data model is used to represent and study things that are connected like a web — for example, roads, rivers, railway tracks, water pipes, or electric lines . It focuses on how things are connected and helps us solve problems like finding the best route, the nearest hospital, or where water will flow. Nodes → Points where things meet or end (e.g., road intersections, railway stations, pumping stations). Edges → Lines connecting the nodes (e.g., roads, pipelines, cables). Topology → The "rules" of connection — which node is linked to which edge. Attributes → Extra details about each part (e.g., road speed limit, pipe size, traffic volume). How It Works 🔍 Make the Network Model Start with a map of lines (roads, pipes, rivers) and mark how they connect. Run Analyses Routing → Find the shortest or fastest path. Closest Facility → Find the nearest hospital, petrol station, etc. Service Area → Find how far y...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...