Skip to main content

The Purpose of Geographic Information Systems (GIS)

GIS serves as a versatile tool to solve spatial problems, analyze geographic data, and support informed decision-making across diverse domains. Below are key purposes of GIS explained in detail:


1. Data Integration and Management

  • Purpose: To combine, organize, and manage spatial and non-spatial data from various sources.
  • GIS allows users to integrate data such as maps, satellite imagery, field surveys, and statistical records into a unified system.
  • This creates a comprehensive database that can be efficiently accessed, updated, and analyzed for various applications.

2. Spatial Analysis and Pattern Recognition

  • Purpose: To analyze spatial relationships, identify patterns, and understand trends.
  • GIS facilitates advanced spatial analyses, such as proximity, overlay, and clustering.
  • For example, it can identify the spread of diseases, monitor land use changes, or determine the shortest route between two points.

3. Visualization of Geographic Information

  • Purpose: To create maps and visual models that communicate complex spatial data effectively.
  • GIS transforms raw data into visual formats such as thematic maps, 3D models, and interactive dashboards.
  • These visualizations make it easier for users to understand geographic phenomena and communicate findings to stakeholders.

4. Decision-Making Support

  • Purpose: To provide insights that help in making informed decisions.
  • GIS supports decision-making in urban planning, disaster management, environmental conservation, transportation, and more.
  • For instance, GIS helps planners identify the best location for a new hospital by analyzing population density, accessibility, and existing facilities.

5. Monitoring and Management of Resources

  • Purpose: To monitor, manage, and conserve natural and human-made resources.
  • GIS is used to track deforestation, water resource distribution, and urban development.
  • It aids in ensuring sustainable use of resources by providing data-driven solutions to resource-related challenges.

6. Disaster Management and Risk Assessment

  • Purpose: To prepare for, respond to, and mitigate the impacts of disasters.
  • GIS helps identify vulnerable areas, plan evacuation routes, and allocate emergency resources efficiently.
  • It is widely used in flood mapping, earthquake risk assessment, and wildfire tracking.

7. Understanding Environmental Change

  • Purpose: To study and mitigate the effects of environmental changes.
  • GIS is critical in analyzing climate change impacts, monitoring biodiversity, and managing ecosystems.
  • It helps identify areas at risk of desertification, sea-level rise, or habitat loss.

8. Urban Planning and Infrastructure Development

  • Purpose: To plan and optimize urban growth and infrastructure.
  • GIS supports zoning, land-use planning, and transportation network design.
  • It enables planners to evaluate population trends and infrastructure demands for future development.

9. Public Health and Epidemiology

  • Purpose: To track diseases, manage healthcare resources, and ensure equitable service delivery.
  • GIS is used to map disease outbreaks, analyze healthcare access, and allocate medical resources effectively.
  • For example, during pandemics, GIS helps visualize hotspots and plan vaccination drives.

10. Historical and Cultural Preservation

  • Purpose: To document, study, and preserve historical and cultural landmarks.
  • GIS is used to map archaeological sites, monitor heritage preservation, and analyze spatial patterns of cultural significance.

11. Business and Market Analysis

  • Purpose: To support businesses in market analysis, customer targeting, and logistics planning.
  • GIS helps companies identify optimal locations for new stores, analyze market trends, and plan efficient delivery routes.

12. Education and Research

  • Purpose: To aid in academic and scientific studies involving spatial data.
  • GIS is used in fields such as geography, geology, ecology, and environmental science for data collection, analysis, and visualization.

.


Calicut University fyugp 
Second semester notes 

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...