Skip to main content

Spatial Database in GIS


A spatial database is a type of database that is designed to store and process spatial data efficiently. Spatial data refers to data that represents objects in geometric space, such as locations, shapes, and their relationships. Unlike traditional databases, spatial databases include special functionalities for handling spatial data types like points, lines, and polygons.

2. Geometric Objects

Spatial databases support a variety of geometric objects:

  • Points: Represent a specific location in space (e.g., the latitude and longitude of a city).
  • Lines: Represent linear features (e.g., roads, rivers).
  • Polygons: Represent area-based features (e.g., boundaries of countries, lakes).

Some advanced spatial databases also support:

  • 3D Objects: Represent volumetric data (e.g., buildings, geological structures).
  • Topological Coverages: Maintain the spatial relationships between objects (e.g., adjacency, containment).
  • Linear Networks: Model connected features (e.g., transportation networks).
  • Triangulated Irregular Networks (TINs): Represent surfaces like terrains.

3. Spatial Extensions and Functions

Spatial databases often include spatial extensions, which are add-ons or built-in tools to process spatial data:

  • Spatial Queries: SQL queries that include spatial conditions (e.g., finding points within a specific polygon).
  • Spatial Indexing: Techniques like R-trees and Quad-trees for efficiently retrieving spatial data.
  • Spatial Analysis: Functions for proximity analysis, buffer creation, and spatial joins.

4. Geographic Database (Geodatabase)

A geographic database, or geodatabase, is a specialized spatial database that stores and processes georeferenced data—data associated with specific locations on Earth. It is widely used in GIS applications for tasks such as mapping, spatial modeling, and spatial analytics.

5. Standards for Spatial Databases

Spatial databases adhere to standards for interoperability and functionality:

  • OGC Simple Features Specification: Defines how spatial data should be represented and manipulated in databases. First released in 1997, it provides guidelines for spatial functions like ST_Intersects() and ST_Contains().
  • SQL/MM Spatial: An extension to the SQL standard for handling spatial data, it builds on OGC specifications and integrates spatial capabilities into SQL databases.

Examples of Spatial Databases and Applications

  1. PostGIS: An open-source spatial extension for PostgreSQL that supports OGC-compliant spatial functions. Example:

    • Query: Find all cities within a 50 km radius of a given point:
      SELECT city_name  FROM cities  WHERE ST_Distance(ST_SetSRID(ST_Point(longitude, latitude), 4326), ST_SetSRID(ST_Point(77.5, 12.9), 4326)) < 50000;  
  2. Oracle Spatial: A commercial database extension that supports advanced spatial features like 3D analysis and geocoding.

  3. ESRI Geodatabase: A proprietary geodatabase format used in ArcGIS software, optimized for managing GIS datasets.

  4. Use Case:

    • A city government uses a spatial database to manage its infrastructure. Roads are stored as lines, parks as polygons, and streetlights as points. The database can answer queries like:
      • Which parks are within a 1 km buffer of a residential area?
      • What is the total road length in a specific district?

Key Differences Between Typical and Spatial Databases

AspectTypical DatabaseSpatial Database
Data TypesNumeric, text, datePoints, lines, polygons, 3D objects
IndexingB-trees, hash indexesR-trees, Quad-trees
QueriesStandard SQLSpatial SQL (e.g., ST_Within, ST_Buffer)
ApplicationsFinance, healthcare, e-commerceGIS, urban planning, environmental monitoring


Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...