Skip to main content

Spatial Database in GIS


A spatial database is a type of database that is designed to store and process spatial data efficiently. Spatial data refers to data that represents objects in geometric space, such as locations, shapes, and their relationships. Unlike traditional databases, spatial databases include special functionalities for handling spatial data types like points, lines, and polygons.

2. Geometric Objects

Spatial databases support a variety of geometric objects:

  • Points: Represent a specific location in space (e.g., the latitude and longitude of a city).
  • Lines: Represent linear features (e.g., roads, rivers).
  • Polygons: Represent area-based features (e.g., boundaries of countries, lakes).

Some advanced spatial databases also support:

  • 3D Objects: Represent volumetric data (e.g., buildings, geological structures).
  • Topological Coverages: Maintain the spatial relationships between objects (e.g., adjacency, containment).
  • Linear Networks: Model connected features (e.g., transportation networks).
  • Triangulated Irregular Networks (TINs): Represent surfaces like terrains.

3. Spatial Extensions and Functions

Spatial databases often include spatial extensions, which are add-ons or built-in tools to process spatial data:

  • Spatial Queries: SQL queries that include spatial conditions (e.g., finding points within a specific polygon).
  • Spatial Indexing: Techniques like R-trees and Quad-trees for efficiently retrieving spatial data.
  • Spatial Analysis: Functions for proximity analysis, buffer creation, and spatial joins.

4. Geographic Database (Geodatabase)

A geographic database, or geodatabase, is a specialized spatial database that stores and processes georeferenced data—data associated with specific locations on Earth. It is widely used in GIS applications for tasks such as mapping, spatial modeling, and spatial analytics.

5. Standards for Spatial Databases

Spatial databases adhere to standards for interoperability and functionality:

  • OGC Simple Features Specification: Defines how spatial data should be represented and manipulated in databases. First released in 1997, it provides guidelines for spatial functions like ST_Intersects() and ST_Contains().
  • SQL/MM Spatial: An extension to the SQL standard for handling spatial data, it builds on OGC specifications and integrates spatial capabilities into SQL databases.

Examples of Spatial Databases and Applications

  1. PostGIS: An open-source spatial extension for PostgreSQL that supports OGC-compliant spatial functions. Example:

    • Query: Find all cities within a 50 km radius of a given point:
      SELECT city_name  FROM cities  WHERE ST_Distance(ST_SetSRID(ST_Point(longitude, latitude), 4326), ST_SetSRID(ST_Point(77.5, 12.9), 4326)) < 50000;  
  2. Oracle Spatial: A commercial database extension that supports advanced spatial features like 3D analysis and geocoding.

  3. ESRI Geodatabase: A proprietary geodatabase format used in ArcGIS software, optimized for managing GIS datasets.

  4. Use Case:

    • A city government uses a spatial database to manage its infrastructure. Roads are stored as lines, parks as polygons, and streetlights as points. The database can answer queries like:
      • Which parks are within a 1 km buffer of a residential area?
      • What is the total road length in a specific district?

Key Differences Between Typical and Spatial Databases

AspectTypical DatabaseSpatial Database
Data TypesNumeric, text, datePoints, lines, polygons, 3D objects
IndexingB-trees, hash indexesR-trees, Quad-trees
QueriesStandard SQLSpatial SQL (e.g., ST_Within, ST_Buffer)
ApplicationsFinance, healthcare, e-commerceGIS, urban planning, environmental monitoring


Comments

Popular posts from this blog

RADIOMETRIC CORRECTION

  Radiometric correction is the process of removing sensor and environmental errors from satellite images so that the measured brightness values (Digital Numbers or DNs) truly represent the Earth's surface reflectance or radiance. In other words, it corrects for sensor defects, illumination differences, and atmospheric effects. 1. Detector Response Calibration Satellite sensors use multiple detectors to scan the Earth's surface. Sometimes, each detector responds slightly differently, causing distortions in the image. Calibration adjusts all detectors to respond uniformly. This includes: (a) De-Striping Problem: Sometimes images show light and dark vertical or horizontal stripes (banding). Caused by one or more detectors drifting away from their normal calibration — they record higher or lower values than others. Common in early Landsat MSS data. Effect: Every few lines (e.g., every 6th line) appear consistently brighter or darker. Soluti...

Atmospheric Correction

It is the process of removing the influence of the atmosphere from remotely sensed images so that the data accurately represent the true reflectance of Earth's surface . When a satellite sensor captures an image, the radiation reaching the sensor is affected by gases, water vapor, aerosols, and dust in the atmosphere. These factors scatter and absorb light, changing the brightness and color of the features seen in the image. Although these atmospheric effects are part of the recorded signal, they can distort surface reflectance values , especially when images are compared across different dates or sensors . Therefore, corrections are necessary to make data consistent and physically meaningful. 🔹 Why Do We Need Atmospheric Correction? To retrieve true surface reflectance – It separates the surface signal from atmospheric influence. To ensure comparability – Enables comparing images from different times, seasons, or sensors. To improve visual quality – Remo...

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Hazard Mapping Spatial Planning Evacuation Planning GIS

Geographic Information Systems (GIS) play a pivotal role in disaster management by providing the tools and frameworks necessary for effective hazard mapping, spatial planning, and evacuation planning. These concepts are integral for understanding disaster risks, preparing for potential hazards, and ensuring that resources are efficiently allocated during and after a disaster. 1. Hazard Mapping: Concept: Hazard mapping involves the process of identifying, assessing, and visually representing the geographical areas that are at risk of certain natural or human-made hazards. Hazard maps display the probability, intensity, and potential impact of specific hazards (e.g., floods, earthquakes, hurricanes, landslides) within a given area. Terminologies: Hazard Zone: An area identified as being vulnerable to a particular hazard (e.g., flood zones, seismic zones). Hazard Risk: The likelihood of a disaster occurring in a specific location, influenced by factors like geography, climate, an...