Skip to main content

Principles of Water Quality


Water quality refers to the chemical, physical, and biological characteristics of water, determining its suitability for various uses (drinking, agriculture, recreation, and ecology). Key parameters include pH, electrical conductivity (EC), biochemical oxygen demand (BOD), and chemical oxygen demand (COD).

1. Suspended and Dissolved Solids

  • Suspended Solids (SS): These are undissolved particles (silt, clay, sand, organic matter) suspended in water.

    • Measurement: Total Suspended Solids (TSS) in milligrams per liter (mg/L).
    • Impact: Cause turbidity, reducing light penetration and harming aquatic life. Can carry pollutants.
    • Example: Construction or agricultural runoff.
  • Dissolved Solids (DS): These are substances completely dissolved in water, forming ions (salts, minerals, gases).

    • Measurement: Total Dissolved Solids (TDS) in mg/L, often estimated by conductivity.
    • Impact: Affect taste, aquatic life, irrigation, and industrial use. Can indicate pollution (high salt/metal concentrations).
    • Example: Salinity in coastal areas, mineral leaching from rocks.

2. Electrical Conductivity (EC)

  • Definition: Measures water's ability to conduct electricity, reflecting the concentration of dissolved ions. Higher ion concentration, higher EC.
  • Units: Microsiemens per centimeter (µS/cm) or millisiemens per centimeter (mS/cm).
  • Factors: Primarily influenced by dissolved salts, minerals, and metals.
  • Example: High in seawater, low in pure water.
  • Significance: Indicates potential salinity issues, industrial contamination, or high nutrient levels (leading to eutrophication).

3. pH of Water

  • Definition: Measures water acidity or alkalinity on a scale of 0-14 (7 is neutral).
  • Significance: Affects solubility and toxicity of chemicals (e.g., heavy metals, nutrients). Most aquatic life thrives in a pH range of 6.5-8.5.
  • Impact:
    • Acidic water (pH < 6): Can leach heavy metals (lead, copper) from pipes, harmful to humans and aquatic life.
    • Basic water (pH > 8.5): Affects nutrient availability, causes scale formation in pipes.
  • Example: Acid rain (pH < 5.6) from fossil fuel burning acidifies water bodies.

4. Trace Constituents

  • Definition: Elements or compounds (heavy metals, trace nutrients, organic pollutants) present in small amounts but with significant impacts.
  • Significance: Can be toxic to aquatic life, harm human health, and disrupt ecosystems.
  • Example: Mercury accumulation in the food chain.

5. Biochemical Oxygen Demand (BOD)

  • Definition: Amount of oxygen consumed by microorganisms to decompose organic matter in water (typically measured over 5 days at 20°C).
  • Units: Milligrams per liter (mg/L).
  • Significance: Indicates organic pollution level. High BOD suggests high levels of biodegradable material (sewage, food waste), depleting oxygen and harming aquatic life.
  • Example: Untreated sewage discharge in a river.

6. Chemical Oxygen Demand (COD)

  • Definition: Total oxygen required to oxidize both biodegradable and non-biodegradable organic substances in water.
  • Units: Milligrams per liter (mg/L).
  • Significance: Measures total oxygen demand, including non-biodegradable substances (COD is usually higher than BOD).
  • Example: Industrial effluents containing organic chemicals.

Comparison of BOD and COD

ParameterBOD (Biochemical Oxygen Demand)COD (Chemical Oxygen Demand)
DefinitionOxygen demand from microbial activityOxygen demand from both biological and chemical processes
PurposeMeasures biodegradable organic matterMeasures total organic matter
Typical Range1-300 mg/L for natural waters20-500 mg/L for polluted waters
UsageIndicator of organic pollution and oxygen depletionEstimates pollution load, especially when BOD is impractical
DecompositionBiologically degraded by microorganismsCan be chemically oxidized, including non-biodegradable compounds
ExampleSewage water, food wasteIndustrial effluents, chemical runoff

Summary

Water quality is assessed through various parameters. Understanding these principles is crucial for assessing water suitability, implementing effective water treatment, and promoting sustainable water management.

Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...