Skip to main content

Principles of Water Quality


Water quality refers to the chemical, physical, and biological characteristics of water, determining its suitability for various uses (drinking, agriculture, recreation, and ecology). Key parameters include pH, electrical conductivity (EC), biochemical oxygen demand (BOD), and chemical oxygen demand (COD).

1. Suspended and Dissolved Solids

  • Suspended Solids (SS): These are undissolved particles (silt, clay, sand, organic matter) suspended in water.

    • Measurement: Total Suspended Solids (TSS) in milligrams per liter (mg/L).
    • Impact: Cause turbidity, reducing light penetration and harming aquatic life. Can carry pollutants.
    • Example: Construction or agricultural runoff.
  • Dissolved Solids (DS): These are substances completely dissolved in water, forming ions (salts, minerals, gases).

    • Measurement: Total Dissolved Solids (TDS) in mg/L, often estimated by conductivity.
    • Impact: Affect taste, aquatic life, irrigation, and industrial use. Can indicate pollution (high salt/metal concentrations).
    • Example: Salinity in coastal areas, mineral leaching from rocks.

2. Electrical Conductivity (EC)

  • Definition: Measures water's ability to conduct electricity, reflecting the concentration of dissolved ions. Higher ion concentration, higher EC.
  • Units: Microsiemens per centimeter (µS/cm) or millisiemens per centimeter (mS/cm).
  • Factors: Primarily influenced by dissolved salts, minerals, and metals.
  • Example: High in seawater, low in pure water.
  • Significance: Indicates potential salinity issues, industrial contamination, or high nutrient levels (leading to eutrophication).

3. pH of Water

  • Definition: Measures water acidity or alkalinity on a scale of 0-14 (7 is neutral).
  • Significance: Affects solubility and toxicity of chemicals (e.g., heavy metals, nutrients). Most aquatic life thrives in a pH range of 6.5-8.5.
  • Impact:
    • Acidic water (pH < 6): Can leach heavy metals (lead, copper) from pipes, harmful to humans and aquatic life.
    • Basic water (pH > 8.5): Affects nutrient availability, causes scale formation in pipes.
  • Example: Acid rain (pH < 5.6) from fossil fuel burning acidifies water bodies.

4. Trace Constituents

  • Definition: Elements or compounds (heavy metals, trace nutrients, organic pollutants) present in small amounts but with significant impacts.
  • Significance: Can be toxic to aquatic life, harm human health, and disrupt ecosystems.
  • Example: Mercury accumulation in the food chain.

5. Biochemical Oxygen Demand (BOD)

  • Definition: Amount of oxygen consumed by microorganisms to decompose organic matter in water (typically measured over 5 days at 20°C).
  • Units: Milligrams per liter (mg/L).
  • Significance: Indicates organic pollution level. High BOD suggests high levels of biodegradable material (sewage, food waste), depleting oxygen and harming aquatic life.
  • Example: Untreated sewage discharge in a river.

6. Chemical Oxygen Demand (COD)

  • Definition: Total oxygen required to oxidize both biodegradable and non-biodegradable organic substances in water.
  • Units: Milligrams per liter (mg/L).
  • Significance: Measures total oxygen demand, including non-biodegradable substances (COD is usually higher than BOD).
  • Example: Industrial effluents containing organic chemicals.

Comparison of BOD and COD

ParameterBOD (Biochemical Oxygen Demand)COD (Chemical Oxygen Demand)
DefinitionOxygen demand from microbial activityOxygen demand from both biological and chemical processes
PurposeMeasures biodegradable organic matterMeasures total organic matter
Typical Range1-300 mg/L for natural waters20-500 mg/L for polluted waters
UsageIndicator of organic pollution and oxygen depletionEstimates pollution load, especially when BOD is impractical
DecompositionBiologically degraded by microorganismsCan be chemically oxidized, including non-biodegradable compounds
ExampleSewage water, food wasteIndustrial effluents, chemical runoff

Summary

Water quality is assessed through various parameters. Understanding these principles is crucial for assessing water suitability, implementing effective water treatment, and promoting sustainable water management.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...