Skip to main content

Principles of Water Quality


Water quality refers to the chemical, physical, and biological characteristics of water, determining its suitability for various uses (drinking, agriculture, recreation, and ecology). Key parameters include pH, electrical conductivity (EC), biochemical oxygen demand (BOD), and chemical oxygen demand (COD).

1. Suspended and Dissolved Solids

  • Suspended Solids (SS): These are undissolved particles (silt, clay, sand, organic matter) suspended in water.

    • Measurement: Total Suspended Solids (TSS) in milligrams per liter (mg/L).
    • Impact: Cause turbidity, reducing light penetration and harming aquatic life. Can carry pollutants.
    • Example: Construction or agricultural runoff.
  • Dissolved Solids (DS): These are substances completely dissolved in water, forming ions (salts, minerals, gases).

    • Measurement: Total Dissolved Solids (TDS) in mg/L, often estimated by conductivity.
    • Impact: Affect taste, aquatic life, irrigation, and industrial use. Can indicate pollution (high salt/metal concentrations).
    • Example: Salinity in coastal areas, mineral leaching from rocks.

2. Electrical Conductivity (EC)

  • Definition: Measures water's ability to conduct electricity, reflecting the concentration of dissolved ions. Higher ion concentration, higher EC.
  • Units: Microsiemens per centimeter (µS/cm) or millisiemens per centimeter (mS/cm).
  • Factors: Primarily influenced by dissolved salts, minerals, and metals.
  • Example: High in seawater, low in pure water.
  • Significance: Indicates potential salinity issues, industrial contamination, or high nutrient levels (leading to eutrophication).

3. pH of Water

  • Definition: Measures water acidity or alkalinity on a scale of 0-14 (7 is neutral).
  • Significance: Affects solubility and toxicity of chemicals (e.g., heavy metals, nutrients). Most aquatic life thrives in a pH range of 6.5-8.5.
  • Impact:
    • Acidic water (pH < 6): Can leach heavy metals (lead, copper) from pipes, harmful to humans and aquatic life.
    • Basic water (pH > 8.5): Affects nutrient availability, causes scale formation in pipes.
  • Example: Acid rain (pH < 5.6) from fossil fuel burning acidifies water bodies.

4. Trace Constituents

  • Definition: Elements or compounds (heavy metals, trace nutrients, organic pollutants) present in small amounts but with significant impacts.
  • Significance: Can be toxic to aquatic life, harm human health, and disrupt ecosystems.
  • Example: Mercury accumulation in the food chain.

5. Biochemical Oxygen Demand (BOD)

  • Definition: Amount of oxygen consumed by microorganisms to decompose organic matter in water (typically measured over 5 days at 20°C).
  • Units: Milligrams per liter (mg/L).
  • Significance: Indicates organic pollution level. High BOD suggests high levels of biodegradable material (sewage, food waste), depleting oxygen and harming aquatic life.
  • Example: Untreated sewage discharge in a river.

6. Chemical Oxygen Demand (COD)

  • Definition: Total oxygen required to oxidize both biodegradable and non-biodegradable organic substances in water.
  • Units: Milligrams per liter (mg/L).
  • Significance: Measures total oxygen demand, including non-biodegradable substances (COD is usually higher than BOD).
  • Example: Industrial effluents containing organic chemicals.

Comparison of BOD and COD

ParameterBOD (Biochemical Oxygen Demand)COD (Chemical Oxygen Demand)
DefinitionOxygen demand from microbial activityOxygen demand from both biological and chemical processes
PurposeMeasures biodegradable organic matterMeasures total organic matter
Typical Range1-300 mg/L for natural waters20-500 mg/L for polluted waters
UsageIndicator of organic pollution and oxygen depletionEstimates pollution load, especially when BOD is impractical
DecompositionBiologically degraded by microorganismsCan be chemically oxidized, including non-biodegradable compounds
ExampleSewage water, food wasteIndustrial effluents, chemical runoff

Summary

Water quality is assessed through various parameters. Understanding these principles is crucial for assessing water suitability, implementing effective water treatment, and promoting sustainable water management.

Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Resolution of Sensors in Remote Sensing

Spatial Resolution 🗺️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution 🌈 Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution 📊 Definition : The ability of a sensor to ...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. 🔹 Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...