Skip to main content

BIS Standards for Drinking Water


The Bureau of Indian Standards (BIS) plays a crucial role in ensuring the quality and safety of drinking water in India. It establishes comprehensive standards that cover various physical, chemical, and microbiological parameters. Let's delve into some key BIS standards, their significance, and relevant concepts:

1. pH Value (6.5 – 8.5)

  • Definition: pH measures the acidity or alkalinity of water on a scale of 0 to 14, with 7 being neutral.
  • Significance:
    • Influences the solubility and availability of minerals in water.
    • Low pH can lead to the leaching of metals like lead and copper from pipes.
    • High pH can cause scale buildup in pipes and appliances.
  • BIS Standard: The pH of drinking water should fall within the range of 6.5 to 8.5 to prevent corrosion and scaling.

2. Turbidity (Maximum 1 NTU)

  • Definition: Turbidity refers to the cloudiness of water caused by suspended particles like dirt, silt, and microorganisms. It is measured in Nephelometric Turbidity Units (NTU).
  • Significance:
    • High turbidity can indicate contamination and hinder disinfection processes.
    • It affects the aesthetic quality of water, making it unpleasant to drink.
  • BIS Standard: The turbidity should not exceed 1 NTU to ensure clear and aesthetically pleasing water.

3. Total Hardness (Maximum 200 mg/L)

  • Definition: Hardness is primarily due to the presence of dissolved calcium and magnesium ions. It is usually measured in mg/L as calcium carbonate.
  • Significance:
    • High hardness can affect the taste of water and cause scaling in appliances.
    • It can also increase soap and detergent consumption.
  • BIS Standard: The total hardness should not exceed 200 mg/L to minimize scaling issues and maintain water quality.

4. E. coli (Should Not Be Detectable in 100 mL Sample)

  • Definition: E. coli is a type of coliform bacteria commonly found in the intestines of humans and animals. Its presence indicates fecal contamination.
  • Significance: E. coli in drinking water signifies potential contamination with harmful pathogens, posing a risk of diseases like diarrhea and dysentery.
  • BIS Standard: E. coli should not be detectable in any 100 mL sample to ensure the absence of fecal contamination.

5. Chloride (Maximum 250 mg/L)

  • Definition: Chlorides are salts of hydrochloric acid, primarily found as chloride ions (Cl⁻).
  • Significance: High chloride levels can impart a salty taste to water and contribute to corrosion.
  • BIS Standard: The chloride content should not exceed 250 mg/L to maintain a pleasant taste and prevent corrosion.

6. Arsenic (Maximum 0.01 mg/L)

  • Definition: Arsenic is a toxic heavy metal that can contaminate water from natural or anthropogenic sources.
  • Significance: Long-term exposure to arsenic can lead to serious health issues, including cancer and skin lesions.
  • BIS Standard: The arsenic concentration should not exceed 0.01 mg/L to safeguard public health.

7. Copper (Maximum 0.05 mg/L)

  • Definition: Copper is an essential trace element, but excessive levels can cause gastrointestinal problems and may affect water taste.
  • Significance: High copper levels can also stain clothes and utensils.
  • BIS Standard: The copper concentration should not exceed 0.05 mg/L to ensure safe consumption.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...