Skip to main content

BIS Standards for Drinking Water


The Bureau of Indian Standards (BIS) plays a crucial role in ensuring the quality and safety of drinking water in India. It establishes comprehensive standards that cover various physical, chemical, and microbiological parameters. Let's delve into some key BIS standards, their significance, and relevant concepts:

1. pH Value (6.5 – 8.5)

  • Definition: pH measures the acidity or alkalinity of water on a scale of 0 to 14, with 7 being neutral.
  • Significance:
    • Influences the solubility and availability of minerals in water.
    • Low pH can lead to the leaching of metals like lead and copper from pipes.
    • High pH can cause scale buildup in pipes and appliances.
  • BIS Standard: The pH of drinking water should fall within the range of 6.5 to 8.5 to prevent corrosion and scaling.

2. Turbidity (Maximum 1 NTU)

  • Definition: Turbidity refers to the cloudiness of water caused by suspended particles like dirt, silt, and microorganisms. It is measured in Nephelometric Turbidity Units (NTU).
  • Significance:
    • High turbidity can indicate contamination and hinder disinfection processes.
    • It affects the aesthetic quality of water, making it unpleasant to drink.
  • BIS Standard: The turbidity should not exceed 1 NTU to ensure clear and aesthetically pleasing water.

3. Total Hardness (Maximum 200 mg/L)

  • Definition: Hardness is primarily due to the presence of dissolved calcium and magnesium ions. It is usually measured in mg/L as calcium carbonate.
  • Significance:
    • High hardness can affect the taste of water and cause scaling in appliances.
    • It can also increase soap and detergent consumption.
  • BIS Standard: The total hardness should not exceed 200 mg/L to minimize scaling issues and maintain water quality.

4. E. coli (Should Not Be Detectable in 100 mL Sample)

  • Definition: E. coli is a type of coliform bacteria commonly found in the intestines of humans and animals. Its presence indicates fecal contamination.
  • Significance: E. coli in drinking water signifies potential contamination with harmful pathogens, posing a risk of diseases like diarrhea and dysentery.
  • BIS Standard: E. coli should not be detectable in any 100 mL sample to ensure the absence of fecal contamination.

5. Chloride (Maximum 250 mg/L)

  • Definition: Chlorides are salts of hydrochloric acid, primarily found as chloride ions (Cl⁻).
  • Significance: High chloride levels can impart a salty taste to water and contribute to corrosion.
  • BIS Standard: The chloride content should not exceed 250 mg/L to maintain a pleasant taste and prevent corrosion.

6. Arsenic (Maximum 0.01 mg/L)

  • Definition: Arsenic is a toxic heavy metal that can contaminate water from natural or anthropogenic sources.
  • Significance: Long-term exposure to arsenic can lead to serious health issues, including cancer and skin lesions.
  • BIS Standard: The arsenic concentration should not exceed 0.01 mg/L to safeguard public health.

7. Copper (Maximum 0.05 mg/L)

  • Definition: Copper is an essential trace element, but excessive levels can cause gastrointestinal problems and may affect water taste.
  • Significance: High copper levels can also stain clothes and utensils.
  • BIS Standard: The copper concentration should not exceed 0.05 mg/L to ensure safe consumption.

Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...

Disaster Risk

Disaster Risk 

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...