Skip to main content

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis

Hazard-Exposure-Vulnerability-Risk (HEVR) Framework:

  • Hazard: A potential event or phenomenon that can cause harm.
  • Exposure: People, assets, or environments in harm's way.
  • Vulnerability: Susceptibility to damage or harm from a hazard.
  • Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability.

Risk as a Function:

  • Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure.
  • Reducing any of these factors can decrease overall risk.

Types of Hazards:

  • Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes.
  • Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change.
  • Technological hazards: Nuclear accidents, chemical spills.

Vulnerability Dimensions:

  • Physical: Infrastructure quality, building codes, location.
  • Social: Age, income, disability, gender, access to resources.
  • Economic: Dependence on hazard-sensitive sectors.
  • Environmental: Ecosystem vulnerability.

Resilience:

  • The ability to adapt, recover, and thrive after a disaster.
  • Includes absorptive, adaptive, and transformative capacity.

Dynamic Nature of Risk:

  • Risk evolves due to changes in environmental, social, and economic conditions.

Risk Perception:

  • How individuals and communities perceive risk influences their preparedness and response.

Disaster Risk Reduction (DRR):

  • A holistic approach to prevent, reduce, or mitigate disaster risks.
  • Includes prevention, mitigation, preparedness, response, and recovery.

Risk Transfer and Financing:

  • Shifting risk to others (e.g., insurance) and securing funds for losses.

Early Warning Systems (EWS):

  • Detect and forecast hazards early for alerts and warnings.
  • Essential components: hazard detection, risk knowledge, dissemination, preparedness.

Mitigation vs. Adaptation:

  • Mitigation: Reducing long-term risk (e.g., flood defenses).
  • Adaptation: Adjusting to expected changes (e.g., climate-resilient infrastructure).

Integrated Risk Management:

  • A holistic approach that integrates different sectors and disciplines.

Systemic Risk:

  • Interconnectedness of hazards and vulnerabilities, where an event in one area can affect others.

Critical Infrastructure:

  • Essential systems and assets (e.g., water, energy, transportation, communication).

Preparedness and Response:

  • Preparedness: Planning, training, and resource stockpiling.
  • Response: Immediate actions to deal with disaster effects.

Additional Considerations:

  • Uncertainty: Risk assessment often involves uncertainty due to limited data or unpredictable events.
  • Equity: Disaster risk is not evenly distributed; vulnerable populations may face disproportionate impacts.
  • Governance: Effective governance is essential for implementing DRR measures and ensuring equitable outcomes.

Key Facts Shaping Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis

  1. Increasing Frequency and Intensity of Natural Disasters:

    • Climate change, urbanization, and environmental degradation are driving this trend.
    • Weather-related disasters have increased by 300% in 50 years (WMO).
  2. Urbanization Exacerbates Vulnerability and Exposure:

    • Rapid urbanization, especially in low- and middle-income countries, increases risk.
    • By 2050, 68% of the world's population will live in urban areas.
  3. Disproportionate Impacts on Vulnerable Groups:

    • Socially vulnerable groups, like the elderly, poor, and marginalized, are most affected.
    • Example: Women accounted for 70% of fatalities in some regions during the 2004 Indian Ocean tsunami.
  4. Climate Change as a Major Driver of Risk:

    • Climate change is increasing the frequency and severity of extreme weather events.
    • IPCC predicts more heatwaves, coastal flooding, and ecosystem disruptions.
  5. Rising Economic Losses from Disasters:

    • Economic losses from disasters are increasing, despite reduced fatalities.
    • Between 2000 and 2019, global economic losses totaled $2.97 trillion (UNDRR).
  6. Vulnerability of Critical Infrastructure:

    • Power grids, water supply, and transportation networks are often highly vulnerable.
    • 80% of cities with over 1 million people are in high-risk areas.
  7. Early Warning Systems Save Lives:

    • Effective early warning systems can significantly reduce disaster-related deaths and losses.
    • Example: Bangladesh's cyclone early warning systems have saved tens of thousands of lives.
  8. Cost-Effectiveness of Preparedness and Mitigation:

    • Investing in preparedness and mitigation is more cost-effective than post-disaster response and recovery.
    • UNDP estimates a 4:1 return on investment in disaster risk reduction.
  9. Global Hotspots for Risk:

    • Asia-Pacific is the most disaster-prone region, accounting for over 40% of global events.
    • Small Island Developing States (SIDS) and the African Sahel are particularly vulnerable.
  10. Interconnected Risks and Systemic Vulnerability:

  • Disasters in one area can have ripple effects across regions and sectors.
  • Example: COVID-19 pandemic highlighted systemic risk in healthcare systems.
  1. Inadequate Insurance Coverage:
  • Many communities and businesses lack sufficient insurance coverage for disaster risks.
  • Only 35% of global disaster-related losses are covered by insurance.
  1. The Role of Ecosystems in Risk Reduction:
  • Healthy ecosystems, like wetlands and forests, can reduce disaster risk.
  • Degradation of these ecosystems increases exposure to disasters.
  1. Uneven and Prolonged Disaster Recovery:
  • Recovery from disasters is often lengthy and uneven, especially for marginalized groups.
  • Example: Hurricane Katrina recovery took years for some communities.
  1. Technology Enhances Risk Monitoring and Mapping:
  • GIS, remote sensing, and big data analytics improve risk assessment, hazard mapping, and early warning.
  • Tools like Google Earth Engine and NASA's satellites enable real-time monitoring.
  1. Importance of Building Codes and Zoning Regulations:
  • Strong building codes and land-use regulations are crucial for reducing vulnerability.
  • However, weak enforcement remains a significant issue in many developing countries.


Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...