Skip to main content

Hazard Vulnerability Exposure Risk

Key Concepts in Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis

Hazard-Exposure-Vulnerability-Risk (HEVR) Framework:

  • Hazard: A potential event or phenomenon that can cause harm.
  • Exposure: People, assets, or environments in harm's way.
  • Vulnerability: Susceptibility to damage or harm from a hazard.
  • Risk: The potential for loss or damage resulting from the interaction of hazards, exposure, and vulnerability.

Risk as a Function:

  • Risk can be calculated using the formula: Risk = Hazard × Vulnerability × Exposure.
  • Reducing any of these factors can decrease overall risk.

Types of Hazards:

  • Natural hazards: Earthquakes, floods, tsunamis, landslides, hurricanes.
  • Anthropogenic hazards: Industrial accidents, pollution, infrastructure failure, climate change.
  • Technological hazards: Nuclear accidents, chemical spills.

Vulnerability Dimensions:

  • Physical: Infrastructure quality, building codes, location.
  • Social: Age, income, disability, gender, access to resources.
  • Economic: Dependence on hazard-sensitive sectors.
  • Environmental: Ecosystem vulnerability.

Resilience:

  • The ability to adapt, recover, and thrive after a disaster.
  • Includes absorptive, adaptive, and transformative capacity.

Dynamic Nature of Risk:

  • Risk evolves due to changes in environmental, social, and economic conditions.

Risk Perception:

  • How individuals and communities perceive risk influences their preparedness and response.

Disaster Risk Reduction (DRR):

  • A holistic approach to prevent, reduce, or mitigate disaster risks.
  • Includes prevention, mitigation, preparedness, response, and recovery.

Risk Transfer and Financing:

  • Shifting risk to others (e.g., insurance) and securing funds for losses.

Early Warning Systems (EWS):

  • Detect and forecast hazards early for alerts and warnings.
  • Essential components: hazard detection, risk knowledge, dissemination, preparedness.

Mitigation vs. Adaptation:

  • Mitigation: Reducing long-term risk (e.g., flood defenses).
  • Adaptation: Adjusting to expected changes (e.g., climate-resilient infrastructure).

Integrated Risk Management:

  • A holistic approach that integrates different sectors and disciplines.

Systemic Risk:

  • Interconnectedness of hazards and vulnerabilities, where an event in one area can affect others.

Critical Infrastructure:

  • Essential systems and assets (e.g., water, energy, transportation, communication).

Preparedness and Response:

  • Preparedness: Planning, training, and resource stockpiling.
  • Response: Immediate actions to deal with disaster effects.

Additional Considerations:

  • Uncertainty: Risk assessment often involves uncertainty due to limited data or unpredictable events.
  • Equity: Disaster risk is not evenly distributed; vulnerable populations may face disproportionate impacts.
  • Governance: Effective governance is essential for implementing DRR measures and ensuring equitable outcomes.

Key Facts Shaping Hazard Identification, Vulnerability Assessment, Exposure Assessment, and Risk Analysis

  1. Increasing Frequency and Intensity of Natural Disasters:

    • Climate change, urbanization, and environmental degradation are driving this trend.
    • Weather-related disasters have increased by 300% in 50 years (WMO).
  2. Urbanization Exacerbates Vulnerability and Exposure:

    • Rapid urbanization, especially in low- and middle-income countries, increases risk.
    • By 2050, 68% of the world's population will live in urban areas.
  3. Disproportionate Impacts on Vulnerable Groups:

    • Socially vulnerable groups, like the elderly, poor, and marginalized, are most affected.
    • Example: Women accounted for 70% of fatalities in some regions during the 2004 Indian Ocean tsunami.
  4. Climate Change as a Major Driver of Risk:

    • Climate change is increasing the frequency and severity of extreme weather events.
    • IPCC predicts more heatwaves, coastal flooding, and ecosystem disruptions.
  5. Rising Economic Losses from Disasters:

    • Economic losses from disasters are increasing, despite reduced fatalities.
    • Between 2000 and 2019, global economic losses totaled $2.97 trillion (UNDRR).
  6. Vulnerability of Critical Infrastructure:

    • Power grids, water supply, and transportation networks are often highly vulnerable.
    • 80% of cities with over 1 million people are in high-risk areas.
  7. Early Warning Systems Save Lives:

    • Effective early warning systems can significantly reduce disaster-related deaths and losses.
    • Example: Bangladesh's cyclone early warning systems have saved tens of thousands of lives.
  8. Cost-Effectiveness of Preparedness and Mitigation:

    • Investing in preparedness and mitigation is more cost-effective than post-disaster response and recovery.
    • UNDP estimates a 4:1 return on investment in disaster risk reduction.
  9. Global Hotspots for Risk:

    • Asia-Pacific is the most disaster-prone region, accounting for over 40% of global events.
    • Small Island Developing States (SIDS) and the African Sahel are particularly vulnerable.
  10. Interconnected Risks and Systemic Vulnerability:

  • Disasters in one area can have ripple effects across regions and sectors.
  • Example: COVID-19 pandemic highlighted systemic risk in healthcare systems.
  1. Inadequate Insurance Coverage:
  • Many communities and businesses lack sufficient insurance coverage for disaster risks.
  • Only 35% of global disaster-related losses are covered by insurance.
  1. The Role of Ecosystems in Risk Reduction:
  • Healthy ecosystems, like wetlands and forests, can reduce disaster risk.
  • Degradation of these ecosystems increases exposure to disasters.
  1. Uneven and Prolonged Disaster Recovery:
  • Recovery from disasters is often lengthy and uneven, especially for marginalized groups.
  • Example: Hurricane Katrina recovery took years for some communities.
  1. Technology Enhances Risk Monitoring and Mapping:
  • GIS, remote sensing, and big data analytics improve risk assessment, hazard mapping, and early warning.
  • Tools like Google Earth Engine and NASA's satellites enable real-time monitoring.
  1. Importance of Building Codes and Zoning Regulations:
  • Strong building codes and land-use regulations are crucial for reducing vulnerability.
  • However, weak enforcement remains a significant issue in many developing countries.


Comments

Popular posts from this blog

Photogrammetry – Types of Photographs

In photogrammetry, aerial photographs are categorized based on camera orientation , coverage , and spectral sensitivity . Below is a breakdown of the major types: 1️⃣ Based on Camera Axis Orientation Type Description Key Feature Vertical Photo Taken with the camera axis pointing directly downward (within 3° of vertical). Used for maps and measurements Oblique Photo Taken with the camera axis tilted away from vertical. Covers more area but with distortions Low Oblique: Horizon not visible High Oblique: Horizon visible 2️⃣ Based on Number of Photos Taken Type Description Single Photo One image taken of an area Stereoscopic Pair Two overlapping photos for 3D viewing and depth analysis Strip or Mosaic Series of overlapping photos covering a long area, useful in mapping large regions 3️⃣ Based on Spectral Sensitivity Type Description Application Panchromatic Captures images in black and white General mapping Infrared (IR) Sensitive to infrared radiation Veget...

Photogrammetry – Geometry of a Vertical Photograph

Photogrammetry is the science of making measurements from photographs, especially for mapping and surveying. When the camera axis is perpendicular (vertical) to the ground, the photo is called a vertical photograph , and its geometry is central to accurate mapping.  Elements of Vertical Photo Geometry In a vertical aerial photograph , the geometry is governed by the central projection principle. Here's how it works: 1. Principal Point (P) The point on the photo where the optical axis of the camera intersects the photo plane. It's the geometric center of the photo. 2. Nadir Point (N) The point on the ground directly below the camera at the time of exposure. Ideally, in a perfect vertical photo, the nadir and principal point coincide. 3. Photo Center (C) Usually coincides with the principal point in a vertical photo. 4. Ground Coordinates (X, Y, Z) Real-world (map) coordinates of objects photographed. 5. Flying Height (H) He...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Photogrammetry

Photogrammetry is the science of taking measurements from photographs —especially to create maps, models, or 3D images of objects, land, or buildings. Imagine you take two pictures of a mountain from slightly different angles. Photogrammetry uses those photos to figure out the shape, size, and position of the mountain—just like our eyes do when we see in 3D! Concepts and Terminologies 1. Photograph A picture captured by a camera , either from the ground (terrestrial) or from above (aerial or drone). 2. Stereo Pair Two overlapping photos taken from different angles. When seen together, they help create a 3D effect —just like how two human eyes work. 3. Overlap To get a 3D model, photos must overlap each other: Forward overlap : Between two photos in a flight line (usually 60–70%) Side overlap : Between adjacent flight lines (usually 30–40%) 4. Scale The ratio of the photo size to real-world size. Example: A 1:10,000 scale photo means 1 cm on the photo...

Flight Planning Mission

1. Define the Purpose Decide why you're doing the mission: Mapping land use? Creating a 3D model? Surveying a building or farmland? 2. Choose the Area of Interest (AOI) Mark the exact area you want to cover on a map: Set boundaries (length & width) Use coordinates (lat/long) 3. Select the Camera and Drone Pick the right tools: Camera type (sensor size, resolution) Drone (range, stability, battery life) 4. Set Flight Parameters Plan how the drone should fly: Altitude (height) – affects image size and detail Overlap : Forward overlap (between photos in the same line) – usually 60-80% Side overlap (between photo rows) – usually 30-60% Speed – slow enough for clear photos 5. Calculate Flight Lines Create the path the drone will fly : Straight lines to cover the whole area Make sure the overlap is correct Consider wind and obstacles 6. Plan Ground Control Points (GCPs) Mark known ground...