Skip to main content

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner)

Multispectral Imaging: This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. This allows for the identification of various features and materials based on their spectral signatures.

Discrete Detectors: These are individual sensors that are arranged in a linear or array configuration. Each detector is responsible for measuring the radiation within a specific wavelength band.

Scanning Mirrors: These are optical components that are used to deflect the incoming radiation onto the discrete detectors. By moving the mirrors, the sensor can scan across the scene, capturing data from different points.

Across-Track Scanner or Whisk Broom Scanner: This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight. This allows for the collection of data along a swath, covering a wide area on the ground.

Remote Sensing Terminologies

A. Rotating Mirror

  • Definition: A mechanical component in some satellite-based remote sensing systems that rotates to scan the Earth's surface. It directs sunlight onto a sensor, enabling the collection of data over a wide area.
  • Purpose: To increase the coverage area of the sensor, allowing for rapid data acquisition.

B. Internal Detectors

  • Definition: Sensors within a remote sensing instrument that convert electromagnetic radiation into electrical signals. These signals are then processed to produce images or data.
  • Purpose: To capture and measure the intensity of radiation reflected or emitted from the Earth's surface.

C. Instantaneous Field of View (IFOV)

  • Definition: The smallest area on the ground that can be resolved by a remote sensing sensor at a given time.
  • Purpose: To determine the spatial resolution of the sensor, indicating the level of detail it can capture.

D. Ground Resolution Cell Viewed (GRCV)

  • Definition: The area on the ground corresponding to the IFOV of a sensor at a specific altitude.
  • Purpose: To measure the size of the smallest distinguishable feature on the Earth's surface.

E. Angular Field of View (AFOV)

  • Definition: The angle between the extreme rays of the field of view of a sensor.
  • Purpose: To determine the extent of the area that can be observed by the sensor at a given distance.

F. Swath

  • Definition: The width of the area on the ground that a sensor can cover in a single pass.
  • Purpose: To measure the lateral coverage of the sensor, indicating the efficiency of data collection.

How it works:

  1. Radiation Collection: The scanning mirror deflects incoming radiation from the Earth's surface onto the array of discrete detectors.
  2. Spectral Separation: Each detector measures the radiation within its specific wavelength band, capturing information about different materials and features.
  3. Scanning: The scanning mirror moves across the scene, allowing the sensor to collect data from multiple points.
  4. Data Processing: The collected data is processed to create multispectral images that can be analyzed to identify and classify features based on their spectral signatures.

Key advantages of this approach:

  • High spatial resolution: Can capture detailed images of the Earth's surface.
  • Wide swath coverage: Can cover a large area in a single pass.
  • Versatility: Can be used for various remote sensing applications, such as land use mapping, vegetation monitoring, and mineral exploration.
Warm regards.
..
Vineesh V
AISHE and UGC Nodal Officer
Assistant Professor of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....

GIS: Real World and Representations - Modeling and Maps

Geographic Information Systems (GIS) serve as a bridge between the real world and digital representations of geographic phenomena. These representations allow users to store, analyze, and visualize spatial data for informed decision-making. Two key aspects of GIS in this context are modeling and maps , both of which are used to represent real-world geographic features and phenomena in a structured, analyzable format. Let's delve into these concepts, terminologies, and examples in detail. 1. Real World and Representations in GIS Concept: The real world comprises physical, tangible phenomena, such as landforms, rivers, cities, and infrastructure, as well as more abstract elements like weather patterns, population densities, and traffic flow. GIS allows us to represent these real-world phenomena digitally, enabling spatial analysis, decision-making, and visualization. The representation of the real world in GIS is achieved through various models and maps , which simplify...

History of GIS

The history of Geographic Information Systems (GIS) is rooted in early efforts to understand spatial relationships and patterns, long before the advent of digital computers. While modern GIS emerged in the mid-20th century with advances in computing, its conceptual foundations lie in cartography, spatial analysis, and thematic mapping. Early Roots of Spatial Analysis (Pre-1960s) One of the earliest documented applications of spatial analysis dates back to  1832 , when  Charles Picquet , a French geographer and cartographer, produced a cholera mortality map of Paris. In his report  Rapport sur la marche et les effets du cholĂ©ra dans Paris et le dĂ©partement de la Seine , Picquet used graduated color shading to represent cholera deaths per 1,000 inhabitants across 48 districts. This work is widely regarded as an early example of choropleth mapping and thematic cartography applied to epidemiology. A landmark moment in the history of spatial analysis occurred in  1854 , when  John Snow  inv...