Skip to main content

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner)

Multispectral Imaging: This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. This allows for the identification of various features and materials based on their spectral signatures.

Discrete Detectors: These are individual sensors that are arranged in a linear or array configuration. Each detector is responsible for measuring the radiation within a specific wavelength band.

Scanning Mirrors: These are optical components that are used to deflect the incoming radiation onto the discrete detectors. By moving the mirrors, the sensor can scan across the scene, capturing data from different points.

Across-Track Scanner or Whisk Broom Scanner: This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight. This allows for the collection of data along a swath, covering a wide area on the ground.

Remote Sensing Terminologies

A. Rotating Mirror

  • Definition: A mechanical component in some satellite-based remote sensing systems that rotates to scan the Earth's surface. It directs sunlight onto a sensor, enabling the collection of data over a wide area.
  • Purpose: To increase the coverage area of the sensor, allowing for rapid data acquisition.

B. Internal Detectors

  • Definition: Sensors within a remote sensing instrument that convert electromagnetic radiation into electrical signals. These signals are then processed to produce images or data.
  • Purpose: To capture and measure the intensity of radiation reflected or emitted from the Earth's surface.

C. Instantaneous Field of View (IFOV)

  • Definition: The smallest area on the ground that can be resolved by a remote sensing sensor at a given time.
  • Purpose: To determine the spatial resolution of the sensor, indicating the level of detail it can capture.

D. Ground Resolution Cell Viewed (GRCV)

  • Definition: The area on the ground corresponding to the IFOV of a sensor at a specific altitude.
  • Purpose: To measure the size of the smallest distinguishable feature on the Earth's surface.

E. Angular Field of View (AFOV)

  • Definition: The angle between the extreme rays of the field of view of a sensor.
  • Purpose: To determine the extent of the area that can be observed by the sensor at a given distance.

F. Swath

  • Definition: The width of the area on the ground that a sensor can cover in a single pass.
  • Purpose: To measure the lateral coverage of the sensor, indicating the efficiency of data collection.

How it works:

  1. Radiation Collection: The scanning mirror deflects incoming radiation from the Earth's surface onto the array of discrete detectors.
  2. Spectral Separation: Each detector measures the radiation within its specific wavelength band, capturing information about different materials and features.
  3. Scanning: The scanning mirror moves across the scene, allowing the sensor to collect data from multiple points.
  4. Data Processing: The collected data is processed to create multispectral images that can be analyzed to identify and classify features based on their spectral signatures.

Key advantages of this approach:

  • High spatial resolution: Can capture detailed images of the Earth's surface.
  • Wide swath coverage: Can cover a large area in a single pass.
  • Versatility: Can be used for various remote sensing applications, such as land use mapping, vegetation monitoring, and mineral exploration.
Warm regards.
..
Vineesh V
AISHE and UGC Nodal Officer
Assistant Professor of Geography,
Government College Chittur, Palakkad
https://g.page/vineeshvc

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...