Skip to main content

WHEN TO USE WHAT STATISTICAL TEST IN RESEARCH

There are several statistical test types for analyzing Research Data. When to use what is often the challenge. This piece provides a simplification 

1️⃣t-test:

- Use when: You want to compare the means of two groups to determine if there's a significant difference.
- Example: You want to compare the average score of students who received traditional teaching vs. those who received innovative teaching.

2️⃣ANOVA (Analysis of Variance):

- Use when: You want to compare the means of three or more groups to determine if there are significant differences.
- Example: You want to compare the average score of students from different schools to determine if there are significant differences in their performance.

3️⃣Regression (Simple and Multiple):

- Use when: You want to examine the relationship between a dependent variable and one or more independent variables.
- Example: You want to examine the relationship between hours studied and exam scores (simple regression), or the relationship between hours studied, exam scores, and student motivation (multiple regression).

4️⃣Chi-squared test:

- Use when: You want to determine if there's a significant association between two categorical variables.
- Example: You want to determine if there's a significant association between smoking and lung cancer.

5️⃣Wilcoxon rank-sum test (Mann-Whitney U test):

- Use when: You want to compare the distributions of two independent groups.
- Example: You want to compare the distribution of scores between students who received traditional teaching and those who received innovative teaching.

6️⃣Kruskal-Wallis H test:

- Use when: You want to compare the distributions of three or more independent groups.
- Example: You want to compare the distribution of scores among students from different schools.

7️⃣Friedman test:

- Use when: You want to compare the distributions of three or more related groups.
- Example: You want to compare the distribution of scores among students at different time points.

8️⃣Pearson correlation coefficient:

- Use when: You want to examine the linear relationship between two continuous variables.
- Example: You want to examine the relationship between hours studied and exam scores.

9️⃣Spearman rank correlation coefficient:

- Use when: You want to examine the relationship between two variables when data is not normally distributed.
- Example: You want to examine the relationship between ranking of favorite foods and ranking of nutritional value.

🔟Kendall's tau correlation coefficient:

- Use when: You want to examine the relationship between two variables when data is ordinal or categorical.
- Example: You want to examine the relationship between socioeconomic status and education level.

1️⃣1️⃣ARIMA models:

- Use when: You want to forecast future values in a time series data.
- Example: You want to predict stock prices based on past trends.

1️⃣2️⃣Exponential smoothing (ES):

- Use when: You want to forecast future values in a time series data with a simple exponential smoothing method.
- Example: You want to predict sales based on past trends.

1️⃣3️⃣Seasonal decomposition:

- Use when: You want to decompose time series data into trend, seasonality, and residuals.
- Example: You want to analyze website traffic data to identify seasonal patterns.

1️⃣4️⃣Kaplan-Meier estimator:

- Use when: You want to estimate the survival function of a population.
- Example: You want to analyze the survival rate of patients with a specific disease.

1️⃣5️⃣Cox proportional hazards model:

- Use when: You want to examine the relationship between covariates and survival time.
- Example: You want to investigate the effect of treatment on survival time.

1️⃣6️⃣Log-rank test:

- Use when: You want to compare the survival curves of two or more groups.
- Example: You want to compare the survival rates of patients with different treatments.

1️⃣7️⃣K-means clustering:

- Use when: You want to group similar observations into clusters based on features.
- Example: You want to segment customers based on buying behavior.

1️⃣8️⃣Hierarchical clustering:

- Use when: You want to group similar observations into clusters based on features, with a hierarchical structure.
- Example: You want to analyze gene expression data to identify clusters of genes.

1️⃣9️⃣DBSCAN (density-based spatial clustering of applications with noise):

- Use when: You want to group similar observations into clusters based on features, with noise handling.
- Example: You want to analyze spatial data to identify clusters of high density.

2️⃣0️⃣Principal component analysis (PCA):

- Use when: You want to reduce the dimensionality of a dataset by identifying principal components.
- Example: You want to analyze stock prices to identify principal components of variation.

2️⃣1️⃣Discriminant analysis:

- Use when: You want to predict group membership based on multivariate data.
- Example: You want to predict customer churn based on usage patterns.

2️⃣2️⃣Canonical correlation analysis:

- Use when: You want to examine the relationship between two sets of multivariate data.
- Example: You want to investigate the relationship between personality traits and behavior.

2️⃣3️⃣Bayesian inference:

- Use when: You want to update probabilities based on new data.
- Example: You want to update the probability of a hypothesis based on new evidence.

2️⃣4️⃣Bayesian regression:

- Use when: You want to model the relationship between variables using Bayesian methods.
- Example:

2️⃣5️⃣Bayesian networks:

- Use when: You want to model complex relationships between variables using Bayesian methods.
- Example: You want to model the relationship between genes and diseases.

2️⃣6️⃣Decision trees:

- Use when: You want to classify observations based on a tree-like model.
- Example: You want to predict customer churn based on usage patterns.

2️⃣7️⃣Random forests:

- Use when: You want to classify observations based on an ensemble of decision trees.
- Example: You want to predict disease diagnosis based on symptoms.

2️⃣8️⃣Support vector machines (SVMs):

- Use when: You want to classify observations based on a hyperplane.
- Example: You want to predict customer churn based on usage patterns.

2️⃣9️⃣Cluster analysis:

- Use when: You want to group similar observations into clusters based on features.
- Example: You want to segment customers based on buying behavior.

3️⃣0️⃣Factor analysis:

- Use when: You want to reduce the dimensionality of a dataset by identifying underlying factors.
- Example: You want to analyze survey data to identify underlying factors of satisfaction.

3️⃣1️⃣Survival analysis:

- Use when: You want to analyze the time-to-event data.
- Example: You want to analyze the survival rate of patients with a specific disease.

3️⃣2️⃣Time-series analysis:

- Use when: You want to analyze data that is ordered in time.
- Example: You want to analyze stock prices to identify patterns and trends.

3️⃣3️⃣Non-parametric tests:

- Use when: You want to analyze data without assuming a specific distribution.
- Example: You want to compare the median scores of students who received traditional teaching vs. those who received innovative teaching.

3️⃣4️⃣Machine learning algorithms:

- Use when: You want to predict outcomes or classify observations based on large datasets.
- Example: You want to predict customer churn based on usage patterns.

The specific test or technique used depends on the research question, data type, and study design.




Comments

Popular posts from this blog

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Accuracy Assessment

Accuracy assessment is the process of checking how correct your classified satellite image is . 👉 After supervised classification, the satellite image is divided into classes like: Water Forest Agriculture Built-up land Barren land But classification is done using computer algorithms, so some areas may be wrongly classified . 👉 Accuracy assessment helps to answer this question: ✔ "How much of my classified map is correct compared to real ground conditions?"  Goal The main goal is to: Measure reliability of classified maps Identify classification errors Improve classification results Provide scientific validity to research 👉 Without accuracy assessment, a classified map is not considered scientifically reliable . Reference Data (Ground Truth Data) Reference data is real-world information used to check classification accuracy. It can be collected from: ✔ Field survey using GPS ✔ High-resolution satellite images (Google Earth etc.) ✔ Existing maps or survey reports 🧭 Exampl...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Representation of Spatial and Temporal Relationships

In GIS, spatial and temporal relationships allow the integration of location (the "where") and time (the "when") to analyze phenomena across space and time. This combination is fundamental to studying dynamic processes such as urban growth, land-use changes, or natural disasters. Key Concepts and Terminologies Geographic Coordinates : Define the position of features on Earth using latitude, longitude, or other coordinate systems. Example: A building's location can be represented as (11.6994° N, 76.0773° E). Timestamp : Represents the temporal aspect of data, such as the date or time a phenomenon was observed. Example: A landslide occurrence recorded on 30/07/2024 . Spatial and Temporal Relationships : Describes how features relate in space and time. These relationships can be: Spatial : Topological (e.g., "intersects"), directional (e.g., "north of"), or proximity-based (e.g., "near"). Temporal : Sequential (e....

Development and scope of Environmental Geography and Recent concepts in environmental Geography

Environmental Geography studies the relationship between humans and nature in a spatial (place-based) way. It combines Physical Geography (natural processes) and Human Geography (human activities). A. Early Stage 🔹 Environmental Determinism Concept: Nature controls human life. Meaning: Climate, landforms, and soil decide how people live. Example: People in deserts (like Sahara Desert) live differently from people in fertile river valleys. 🔹 Possibilism Concept: Humans can modify nature. Meaning: Environment gives options, but humans make choices. Example: In dry areas like Rajasthan, people use irrigation to grow crops. 👉 In this stage, geography was mostly descriptive (explaining what exists). B. Evolution Stage (Mid-20th Century) Environmental problems increased due to: Industrialization Urbanization Deforestation Pollution Geographers started studying: Environmental degradation Resource management Human impact on ecosystems The field became analytical and problem-solving...