Skip to main content

Surface water pollution and Environmental

Surface water pollution refers to the contamination of water bodies such as rivers, lakes, and oceans by various pollutants. These pollutants can come from both natural sources and human activities. Environmental impacts of surface water pollution are significant and include:


1. Ecosystem Damage: Pollutants like industrial chemicals, agricultural runoff, and sewage can harm aquatic ecosystems. They can disrupt the balance of aquatic life, leading to fish kills and the decline of biodiversity.


2. Water Quality: Contaminated surface water can affect the quality of drinking water sources. When pollutants enter rivers and lakes, they can make water unsafe for human consumption, leading to health risks.


3. Human Health: Surface water pollution can impact human health when polluted water is used for drinking, recreation, or irrigation. Contaminants like bacteria, heavy metals, and toxic chemicals can cause various diseases and health problems.


4. Economic Costs: Cleanup and mitigation of surface water pollution come with significant economic costs. Polluted water bodies can affect industries like fisheries and tourism, leading to financial losses in affected regions.


5. Habitat Destruction: Pollution can destroy the habitats of aquatic species. Chemical pollutants and sedimentation can smother riverbeds and disrupt the nesting grounds of various aquatic organisms.


6. Algal Blooms: Excessive nutrient pollution, often from agricultural runoff, can lead to harmful algal blooms. These blooms deplete oxygen, create dead zones, and release toxins that harm aquatic life and impact human activities.


7. Global Impact: Polluted surface water can eventually flow into the ocean, contributing to marine pollution and negatively affecting coastal ecosystems and wildlife.


8. Regulatory Challenges: Addressing surface water pollution often requires complex regulations and enforcement mechanisms. Governments and organizations must monitor and control pollution sources to mitigate environmental damage.


Efforts to combat surface water pollution include the enforcement of water quality standards, better waste management practices, and promoting sustainable land use and agriculture to reduce runoff. Protecting surface water quality is crucial for both ecological and human well-being and is an integral part of environmental conservation.




Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...