Skip to main content

Geometric Correction


Geometric Correction:


- Geometric correction is a critical process in remote sensing and digital image processing. It involves adjusting and aligning an image so that it accurately represents the Earth's surface in terms of scale, orientation, and spatial accuracy. This correction compensates for various geometric distortions and errors introduced during image acquisition and sensor characteristics, ensuring that the image can be used for precise geospatial analysis and mapping.


Source of Geometric Error:


- Geometric errors in remote sensing arise from various sources, including inaccuracies in sensor characteristics, platform movement, Earth's curvature, terrain relief, atmospheric conditions, and other factors. These errors can lead to distortions, misalignments, and inaccuracies in the positioning and representation of objects within an image.


Types of Geometric Error:


- Geometric errors can manifest in different ways, including:

  1. Scale Error: Inaccurate representation of distances in the image.

  2. Positional Error: Errors in the location of objects within the image.

  3. Angular Error: Errors in the orientation or rotation of objects.

  4. Distortion: Misrepresentation of object shapes or sizes.

  5. Parallax Error: Discrepancies in object positions due to elevation differences.

  6. Relief Displacement: Displacements of objects due to variations in terrain elevation.

  7. Atmospheric Refraction: Errors due to the bending of light in the atmosphere.

  8. Satellite Ephemeris Errors: Errors in satellite position data.

  9. DEM Errors: Inaccuracies in the Digital Elevation Model used for terrain correction.

  10. Time-Dependent Errors: Errors that change over time.

  11. Resampling Error: Errors introduced during pixel value interpolation.

  12. Control Point Error: Errors in the accuracy of ground control points.


Types of Geometric Correction:


- Geometric correction techniques are used to rectify or mitigate these errors. Common types include:

  1. Image-to-Map Transformation: Matching control points to align the image with a map.

  2. Rubber Sheet Transformation: Non-linear correction using polynomial functions.

  3. Affine Transformation: Linear correction for basic distortions.

  4. Projective Transformation (Homography): Correcting complex distortions, including perspective.

  5. Orthorectification: Comprehensive correction accounting for terrain and Earth's curvature.

  6. Bundle Adjustment: Simultaneous adjustment of multiple images for 3D mapping.

  7. Sensor Model-Based Correction: Using detailed sensor models for correction.

  8. Resampling: Interpolating pixel values after correction.


Each type of geometric correction is chosen based on the specific nature of the errors in the imagery and the desired level of accuracy for the application at hand.

Comments

Popular posts from this blog

KSHEC Scholarship 2024-25

KSHEC Scholarship 2024-25 Alert! First-Year UG Students Only, Don't Miss This Golden Opportunity! πŸ’‘βœ¨ Are you a first-year undergraduate student studying in a Government or Aided College in Kerala? Do you need financial assistance to continue your education without stress? The Kerala State Higher Education Council (KSHEC) Scholarship is here to support YOU!  This scholarship is a lifeline for deserving students, helping them focus on their studies without worrying about financial burdens. If you meet the criteria, APPLY NOW and take a step towards a brighter future! 🌟 βœ… Simple Online Application – Quick & easy process!  πŸ“Œ Who Can Apply? βœ”οΈ First-year UG students ONLY βœ”οΈ Must be studying in an Arts & Science Government or Aided college in Kerala βœ”οΈ Professional Course students are not eligible  πŸ”Ή Scholarship Amounts Per Year: πŸ“Œ 1st Year FYUGP – β‚Ή12,000 πŸ“Œ 2nd Year FYUGP – β‚Ή18,000 πŸ“Œ 3rd Year FYUGP – β‚Ή24,000 πŸ“Œ 4th Year FYUGP – β‚Ή40,000 πŸ“Œ 5th Year PG – β‚Ή60,000  Great News...

Disaster Management

1. Disaster Risk Analysis β†’ Disaster Risk Reduction β†’ Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Pre During and Post Disaster

Disaster management is a structured approach aimed at reducing risks, responding effectively, and ensuring a swift recovery from disasters. It consists of three main phases: Pre-Disaster (Mitigation & Preparedness), During Disaster (Response), and Post-Disaster (Recovery). These phases involve various strategies, policies, and actions to protect lives, property, and the environment. Below is a breakdown of each phase with key concepts, terminologies, and examples. 1. Pre-Disaster Phase (Mitigation and Preparedness) Mitigation: This phase focuses on reducing the severity of a disaster by minimizing risks and vulnerabilities. It involves structural and non-structural measures. Hazard Identification: Recognizing potential natural and human-made hazards (e.g., earthquakes, floods, industrial accidents). Risk Assessment: Evaluating the probability and consequences of disasters using GIS, remote sensing, and historical data. Vulnerability Analysis: Identifying areas and p...

Recovery and Rehabilitation

Disaster management involves several phases, including mitigation, preparedness, response, recovery, and rehabilitation . Recovery and rehabilitation are post-disaster activities that aim to restore normalcy and improve resilience in affected areas. 1. Recovery Recovery is the long-term process of rebuilding communities, infrastructure, economy, and social systems after a disaster. It focuses on restoring normalcy while incorporating resilience measures to withstand future disasters. Short-term Recovery – Immediate efforts within weeks or months to restore essential services (e.g., water, electricity, healthcare, shelter). Long-term Recovery – Efforts that take months to years, including rebuilding infrastructure, economic revitalization, and mental health support. Resilience – The ability of a community to recover quickly and adapt to future disasters. Livelihood Restoration – Providing economic support to affected populations through job creation, skill training, a...

Mapping Process

The mapping process involves several systematic steps to transform real-world spatial information into a readable, accurate, and useful representation. Below is a structured explanation of each step in the mapping process, with key concepts, terminologies, and examples. 1. Defining the Purpose of the Map Before creating a map, it is essential to determine its purpose and audience . Different maps serve different objectives, such as navigation, analysis, or communication. Types of Maps Based on Purpose: Thematic Maps: Focus on specific subjects (e.g., climate maps, population density maps). Topographic Maps: Show natural and human-made features (e.g., contour maps, landform maps). Tourist Maps: Highlight attractions, roads, and landmarks for travelers. Cadastral Maps: Used in land ownership and property boundaries. Navigational Maps: Used in GPS systems for wayfinding. Example: A disaster risk map for floods will highlight flood-prone areas, emergency shelters, and ...