Skip to main content

Geometric Correction


Geometric Correction:


- Geometric correction is a critical process in remote sensing and digital image processing. It involves adjusting and aligning an image so that it accurately represents the Earth's surface in terms of scale, orientation, and spatial accuracy. This correction compensates for various geometric distortions and errors introduced during image acquisition and sensor characteristics, ensuring that the image can be used for precise geospatial analysis and mapping.


Source of Geometric Error:


- Geometric errors in remote sensing arise from various sources, including inaccuracies in sensor characteristics, platform movement, Earth's curvature, terrain relief, atmospheric conditions, and other factors. These errors can lead to distortions, misalignments, and inaccuracies in the positioning and representation of objects within an image.


Types of Geometric Error:


- Geometric errors can manifest in different ways, including:

  1. Scale Error: Inaccurate representation of distances in the image.

  2. Positional Error: Errors in the location of objects within the image.

  3. Angular Error: Errors in the orientation or rotation of objects.

  4. Distortion: Misrepresentation of object shapes or sizes.

  5. Parallax Error: Discrepancies in object positions due to elevation differences.

  6. Relief Displacement: Displacements of objects due to variations in terrain elevation.

  7. Atmospheric Refraction: Errors due to the bending of light in the atmosphere.

  8. Satellite Ephemeris Errors: Errors in satellite position data.

  9. DEM Errors: Inaccuracies in the Digital Elevation Model used for terrain correction.

  10. Time-Dependent Errors: Errors that change over time.

  11. Resampling Error: Errors introduced during pixel value interpolation.

  12. Control Point Error: Errors in the accuracy of ground control points.


Types of Geometric Correction:


- Geometric correction techniques are used to rectify or mitigate these errors. Common types include:

  1. Image-to-Map Transformation: Matching control points to align the image with a map.

  2. Rubber Sheet Transformation: Non-linear correction using polynomial functions.

  3. Affine Transformation: Linear correction for basic distortions.

  4. Projective Transformation (Homography): Correcting complex distortions, including perspective.

  5. Orthorectification: Comprehensive correction accounting for terrain and Earth's curvature.

  6. Bundle Adjustment: Simultaneous adjustment of multiple images for 3D mapping.

  7. Sensor Model-Based Correction: Using detailed sensor models for correction.

  8. Resampling: Interpolating pixel values after correction.


Each type of geometric correction is chosen based on the specific nature of the errors in the imagery and the desired level of accuracy for the application at hand.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...