Skip to main content

Geometric Correction


Geometric Correction:


- Geometric correction is a critical process in remote sensing and digital image processing. It involves adjusting and aligning an image so that it accurately represents the Earth's surface in terms of scale, orientation, and spatial accuracy. This correction compensates for various geometric distortions and errors introduced during image acquisition and sensor characteristics, ensuring that the image can be used for precise geospatial analysis and mapping.


Source of Geometric Error:


- Geometric errors in remote sensing arise from various sources, including inaccuracies in sensor characteristics, platform movement, Earth's curvature, terrain relief, atmospheric conditions, and other factors. These errors can lead to distortions, misalignments, and inaccuracies in the positioning and representation of objects within an image.


Types of Geometric Error:


- Geometric errors can manifest in different ways, including:

  1. Scale Error: Inaccurate representation of distances in the image.

  2. Positional Error: Errors in the location of objects within the image.

  3. Angular Error: Errors in the orientation or rotation of objects.

  4. Distortion: Misrepresentation of object shapes or sizes.

  5. Parallax Error: Discrepancies in object positions due to elevation differences.

  6. Relief Displacement: Displacements of objects due to variations in terrain elevation.

  7. Atmospheric Refraction: Errors due to the bending of light in the atmosphere.

  8. Satellite Ephemeris Errors: Errors in satellite position data.

  9. DEM Errors: Inaccuracies in the Digital Elevation Model used for terrain correction.

  10. Time-Dependent Errors: Errors that change over time.

  11. Resampling Error: Errors introduced during pixel value interpolation.

  12. Control Point Error: Errors in the accuracy of ground control points.


Types of Geometric Correction:


- Geometric correction techniques are used to rectify or mitigate these errors. Common types include:

  1. Image-to-Map Transformation: Matching control points to align the image with a map.

  2. Rubber Sheet Transformation: Non-linear correction using polynomial functions.

  3. Affine Transformation: Linear correction for basic distortions.

  4. Projective Transformation (Homography): Correcting complex distortions, including perspective.

  5. Orthorectification: Comprehensive correction accounting for terrain and Earth's curvature.

  6. Bundle Adjustment: Simultaneous adjustment of multiple images for 3D mapping.

  7. Sensor Model-Based Correction: Using detailed sensor models for correction.

  8. Resampling: Interpolating pixel values after correction.


Each type of geometric correction is chosen based on the specific nature of the errors in the imagery and the desired level of accuracy for the application at hand.

Comments

Popular posts from this blog

Accuracy Assessment

Accuracy assessment is the process of checking how correct your classified satellite image is . 👉 After supervised classification, the satellite image is divided into classes like: Water Forest Agriculture Built-up land Barren land But classification is done using computer algorithms, so some areas may be wrongly classified . 👉 Accuracy assessment helps to answer this question: ✔ "How much of my classified map is correct compared to real ground conditions?"  Goal The main goal is to: Measure reliability of classified maps Identify classification errors Improve classification results Provide scientific validity to research 👉 Without accuracy assessment, a classified map is not considered scientifically reliable . Reference Data (Ground Truth Data) Reference data is real-world information used to check classification accuracy. It can be collected from: ✔ Field survey using GPS ✔ High-resolution satellite images (Google Earth etc.) ✔ Existing maps or survey reports 🧭 Exampl...

History of GIS

1. 1832 - Early Spatial Analysis in Epidemiology:    - Charles Picquet creates a map in Paris detailing cholera deaths per 1,000 inhabitants.    - Utilizes halftone color gradients for visual representation. 2. 1854 - John Snow's Cholera Outbreak Analysis:    - Epidemiologist John Snow identifies cholera outbreak source in London using spatial analysis.    - Maps casualties' residences and nearby water sources to pinpoint the outbreak's origin. 3. Early 20th Century - Photozincography and Layered Mapping:    - Photozincography development allows maps to be split into layers for vegetation, water, etc.    - Introduction of layers, later a key feature in GIS, for separate printing plates. 4. Mid-20th Century - Computer Facilitation of Cartography:    - Waldo Tobler's 1959 publication details using computers for cartography.    - Computer hardware development, driven by nuclear weapon research, leads to broader mapping applications by early 1960s. 5. 1960 - Canada Geograph...

Development and scope of Environmental Geography and Recent concepts in environmental Geography

Environmental Geography studies the relationship between humans and nature in a spatial (place-based) way. It combines Physical Geography (natural processes) and Human Geography (human activities). A. Early Stage 🔹 Environmental Determinism Concept: Nature controls human life. Meaning: Climate, landforms, and soil decide how people live. Example: People in deserts (like Sahara Desert) live differently from people in fertile river valleys. 🔹 Possibilism Concept: Humans can modify nature. Meaning: Environment gives options, but humans make choices. Example: In dry areas like Rajasthan, people use irrigation to grow crops. 👉 In this stage, geography was mostly descriptive (explaining what exists). B. Evolution Stage (Mid-20th Century) Environmental problems increased due to: Industrialization Urbanization Deforestation Pollution Geographers started studying: Environmental degradation Resource management Human impact on ecosystems The field became analytical and problem-solving...

Supervised Classification

Image Classification in Remote Sensing Image classification in remote sensing involves categorizing pixels in an image into thematic classes to produce a map. This process is essential for land use and land cover mapping, environmental studies, and resource management. The two primary methods for classification are Supervised and Unsupervised Classification . Here's a breakdown of these methods and the key stages of image classification. 1. Types of Classification Supervised Classification In supervised classification, the analyst manually defines classes of interest (known as information classes ), such as "water," "urban," or "vegetation," and identifies training areas —sections of the image that are representative of these classes. Using these training areas, the algorithm learns the spectral characteristics of each class and applies them to classify the entire image. When to Use Supervised Classification:   - You have prior knowledge about the c...

Change Detection

Change detection is the process of finding differences on the Earth's surface over time by comparing satellite images of the same area taken on different dates . After supervised classification , two classified maps (e.g., Year-1 and Year-2) are compared to identify land use / land cover changes .  Goal To detect where , what , and how much change has occurred To monitor urban growth, deforestation, floods, agriculture, etc.  Basic Concept Forest → Forest = No change Forest → Urban = Change detected Key Terminologies Multi-temporal images : Images of the same area at different times Post-classification comparison : Comparing two classified maps Change matrix : Table showing class-to-class change Change / No-change : Whether land cover remains same or different Main Methods Post-classification comparison – Most common and easy Image differencing – Subtract pixel values Image ratioing – Divide pixel values Deep learning methods – Advanced AI-based detection Examples Agricult...