Skip to main content

Geometric Correction


Geometric Correction:


- Geometric correction is a critical process in remote sensing and digital image processing. It involves adjusting and aligning an image so that it accurately represents the Earth's surface in terms of scale, orientation, and spatial accuracy. This correction compensates for various geometric distortions and errors introduced during image acquisition and sensor characteristics, ensuring that the image can be used for precise geospatial analysis and mapping.


Source of Geometric Error:


- Geometric errors in remote sensing arise from various sources, including inaccuracies in sensor characteristics, platform movement, Earth's curvature, terrain relief, atmospheric conditions, and other factors. These errors can lead to distortions, misalignments, and inaccuracies in the positioning and representation of objects within an image.


Types of Geometric Error:


- Geometric errors can manifest in different ways, including:

  1. Scale Error: Inaccurate representation of distances in the image.

  2. Positional Error: Errors in the location of objects within the image.

  3. Angular Error: Errors in the orientation or rotation of objects.

  4. Distortion: Misrepresentation of object shapes or sizes.

  5. Parallax Error: Discrepancies in object positions due to elevation differences.

  6. Relief Displacement: Displacements of objects due to variations in terrain elevation.

  7. Atmospheric Refraction: Errors due to the bending of light in the atmosphere.

  8. Satellite Ephemeris Errors: Errors in satellite position data.

  9. DEM Errors: Inaccuracies in the Digital Elevation Model used for terrain correction.

  10. Time-Dependent Errors: Errors that change over time.

  11. Resampling Error: Errors introduced during pixel value interpolation.

  12. Control Point Error: Errors in the accuracy of ground control points.


Types of Geometric Correction:


- Geometric correction techniques are used to rectify or mitigate these errors. Common types include:

  1. Image-to-Map Transformation: Matching control points to align the image with a map.

  2. Rubber Sheet Transformation: Non-linear correction using polynomial functions.

  3. Affine Transformation: Linear correction for basic distortions.

  4. Projective Transformation (Homography): Correcting complex distortions, including perspective.

  5. Orthorectification: Comprehensive correction accounting for terrain and Earth's curvature.

  6. Bundle Adjustment: Simultaneous adjustment of multiple images for 3D mapping.

  7. Sensor Model-Based Correction: Using detailed sensor models for correction.

  8. Resampling: Interpolating pixel values after correction.


Each type of geometric correction is chosen based on the specific nature of the errors in the imagery and the desired level of accuracy for the application at hand.

Comments

Popular posts from this blog

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 µm) Near-Infrared – NIR (0.7–1.3 µm) Shortwave Infrared – SWIR (1.3–3.0 µm) Thermal Infrared – TIR (8–14 µm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

Radar Sensors in Remote Sensing

Radar sensors are active remote sensing instruments that use microwave radiation to detect and measure Earth's surface features. They transmit their own energy (radio waves) toward the Earth and record the backscattered signal that returns to the sensor. Since they do not depend on sunlight, radar systems can collect data: day or night through clouds, fog, smoke, and rain in all weather conditions This makes radar extremely useful for Earth observation. 1. Active Sensor A radar sensor produces and transmits its own microwaves. This is different from optical and thermal sensors, which depend on sunlight or emitted heat. 2. Microwave Region Radar operates in the microwave region of the electromagnetic spectrum , typically from 1 mm to 1 m wavelength. Common radar frequency bands: P-band (70 cm) L-band (23 cm) S-band (9 cm) C-band (5.6 cm) X-band (3 cm) Each band penetrates and interacts with surfaces differently: Lo...

Thermal Sensors in Remote Sensing

Thermal sensors are remote sensing instruments that detect naturally emitted thermal infrared (TIR) radiation from the Earth's surface. Unlike optical sensors (which detect reflected sunlight), thermal sensors measure heat energy emitted by objects because of their temperature. They work mainly in the Thermal Infrared region (8–14 µm) of the electromagnetic spectrum. 1. Thermal Infrared Radiation All objects above 0 Kelvin (absolute zero) emit electromagnetic radiation. This is explained by Planck's Radiation Law . For Earth's surface temperature range (about 250–330 K), the peak emitted radiation occurs in the 8–14 µm thermal window . Thus, thermal sensors detect emitted energy , not reflected sunlight. 2. Emissivity Emissivity is the efficiency with which a material emits thermal radiation. Values range from 0 to 1 : Water, vegetation → high emissivity (0.95–0.99) Bare soil → medium (0.85–0.95) Metals → low (0.1–0.3) E...

Geometric Correction

When satellite or aerial images are captured, they often contain distortions (errors in shape, scale, or position) caused by many factors — like Earth's curvature, satellite motion, terrain height (relief), or the Earth's rotation . These distortions make the image not properly aligned with real-world coordinates (latitude and longitude). 👉 Geometric correction is the process of removing these distortions so that every pixel in the image correctly represents its location on the Earth's surface. After geometric correction, the image becomes geographically referenced and can be used with maps and GIS data. Types  1. Systematic Correction Systematic errors are predictable and can be modeled mathematically. They occur due to the geometry and movement of the satellite sensor or the Earth. Common systematic distortions: Scan skew – due to the motion of the sensor as it scans the Earth. Mirror velocity variation – scanning mirror moves at a va...

LiDAR in Remote Sensing

LiDAR (Light Detection and Ranging) is an active remote sensing technology that uses laser pulses to measure distances to the Earth's surface and create high-resolution 3D maps . LiDAR sensors emit short pulses of laser light (usually in the near-infrared range) and measure the time it takes for the pulse to return after hitting an object. Because LiDAR measures distance very precisely, it is excellent for mapping: terrain vegetation height buildings forests coastlines flood plains ✅ 1. Active Sensor LiDAR sends its own laser energy, unlike passive sensors that rely on sunlight. ✅ 2. Laser Pulse LiDAR emits thousands of pulses per second (even millions). Wavelengths commonly used: Near-Infrared (NIR) → land and vegetation mapping Green (532 nm) → water/ bathymetry (penetrates shallow water) ✅ 3. Time of Flight (TOF) The sensor measures the time taken for the laser to travel: from the sensor → to the sur...