Skip to main content

Evolution of Indian Platform

The Indian Platform, also known as the Indian Shield or the Peninsular Shield, is a stable geological region that forms the core of the Indian subcontinent. It has a complex geological history that spans billions of years. Here's an overview of the evolution of the Indian Platform:


1. Archean Eon (4 billion to 2.5 billion years ago):

    The earliest geological history of the Indian Platform dates back to the Archean Eon, during which some of the oldest rocks on Earth were formed.

    The Dharwar Craton, located in the southern part of the Indian Platform, is one of the prime examples of Archeanage geological formations in India.


2. Proterozoic Eon (2.5 billion to 541 million years ago):

    During the Proterozoic Eon, the Indian Platform witnessed significant geological events.

    Sedimentary basins formed, leading to the accumulation of thick sequences of sedimentary rocks.

    The Vindhyan Supergroup, a prominent sedimentary rock formation, was deposited during this time.


3. Rodinia Supercontinent (1.3 billion to 750 million years ago):

    India was part of the supercontinent Rodinia during this period.

    It was situated near the southern margin of Rodinia.


4. Breakup of Rodinia and Formation of Gondwana (750 million to 540 million years ago):

    Rodinia began to break apart during the Neoproterozoic.

    India separated from the supercontinent and was positioned closer to Antarctica, forming part of the Gondwana supercontinent.


5. Cambrian to Devonian Periods (541 million to 358 million years ago):

    During this time, India experienced marine sedimentation and the deposition of sedimentary rocks in shallow seas.


6. Carboniferous to Permian Periods (358 million to 252 million years ago):

    India was located near the equator and experienced extensive coalforming swamps and glacial deposits.


7. Mesozoic Era (252 million to 66 million years ago):

    India remained part of Gondwana during the early Mesozoic, but it began drifting northward.

    This northward movement eventually led to its separation from Gondwana and initiated the formation of the Indian subcontinent.


8. Cenozoic Era (66 million years ago to present):

    The most significant phase in the evolution of the Indian Platform occurred during the Cenozoic.

    India continued to move northward and eventually collided with the Eurasian Plate around 50 million years ago.

    This collision resulted in the uplift of the Himalayan mountain range and the Tibetan Plateau, significantly impacting the Indian Platform's geology and topography.


The collision with the Eurasian Plate is a defining event in the evolution of the Indian Platform, shaping its current geological features and creating some of the world's most prominent mountain ranges, including the Himalayas. This collision also continues to influence seismic activity in the region. Overall, the geological evolution of the Indian Platform reflects its role in the assembly of the Indian subcontinent and its dynamic geological history.





Comments

Popular posts from this blog

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Logical Data Model in GIS

In GIS, a logical data model defines how data is structured and interrelated—independent of how it is physically stored or implemented. It serves as a blueprint for designing databases, focusing on the organization of entities, their attributes, and relationships, without tying them to a specific database technology. Key Features Abstraction : The logical model operates at an abstract level, emphasizing the conceptual structure of data rather than the technical details of storage or implementation. Entity-Attribute Relationships : It identifies key entities (objects or concepts) and their attributes (properties), as well as the logical relationships between them. Business Rules : Business logic is embedded in the model to enforce rules, constraints, and conditions that ensure data consistency and accuracy. Technology Independence : The logical model is platform-agnostic—it is not tied to any specific database system or storage format. Visual Representat...

Approaches of Surface Water Management: Watershed-Based Approaches

Surface water management refers to the strategies used to regulate and optimize the availability, distribution, and quality of surface water resources such as rivers, lakes, and reservoirs. One of the most effective strategies is the watershed-based approach , which considers the entire watershed or drainage basin as a unit for water resource management, ensuring sustainability and minimizing conflicts between upstream and downstream users. 1. Watershed-Based Approaches Watershed A watershed (or drainage basin) is a geographical area where all precipitation and surface runoff flow into a common outlet such as a river, lake, or ocean. Example : The Ganga River Basin is a watershed that drains into the Bay of Bengal. Hydrological Cycle and Watershed Management Watershed-based approaches work by managing the hydrological cycle , which involves precipitation, infiltration, runoff, evapotranspiration, and groundwater recharge. Precipitation : Rainfall or snowfall within a...

Raster Data Structure

Raster Data Raster data is like a digital photo made up of small squares called cells or pixels . Each cell shows something about that spot — like how high it is (elevation), how hot it is (temperature), or what kind of land it is (forest, water, etc.). Think of it like a graph paper where each box is colored to show what's there. Key Points What's in the cell? Each cell stores information — for example, "water" or "forest." Where is the cell? The cell's location comes from its place in the grid (like row 3, column 5). We don't need to store its exact coordinates. How Do We Decide a Cell's Value? Sometimes, one cell covers more than one thing (like part forest and part water). To choose one value , we can: Center Point: Use whatever feature is in the middle. Most Area: Use the feature that takes up the most space in the cell. Most Important: Use the most important feature (like a road or well), even if it...

Disaster Management international framework

The international landscape for disaster management relies on frameworks that emphasize reducing risk, improving preparedness, and fostering resilience to protect lives, economies, and ecosystems from the impacts of natural and human-made hazards. Here's a more detailed examination of key international frameworks, with a focus on terminologies, facts, and concepts, as well as the role of the United Nations Office for Disaster Risk Reduction (UNDRR): 1. Sendai Framework for Disaster Risk Reduction 2015-2030 Adopted at the Third UN World Conference on Disaster Risk Reduction in Sendai, Japan, and endorsed by the UN General Assembly in 2015, the Sendai Framework represents a paradigm shift from disaster response to proactive disaster risk management. It applies across natural, technological, and biological hazards. Core Priorities: Understanding Disaster Risk: This includes awareness of disaster risk factors and strengthening risk assessments based on geographic, social, and econo...