Skip to main content

Raster Data Analysis. GIS

Raster data analysis is a fundamental aspect of GIS that involves working with data represented in a grid-based format known as raster data. Raster data consists of a series of cells or pixels, where each cell represents a value or attribute associated with a specific location on the Earth's surface.

In GIS, raster data analysis refers to the process of manipulating, extracting information, and deriving new insights from raster datasets. This type of analysis enables us to understand spatial patterns, perform calculations, and make informed decisions based on the values within the raster cells.

There are several tools and techniques available for raster data analysis in GIS software. Here are some commonly used ones:

1. Raster Calculator: This tool allows you to perform mathematical operations on raster datasets, such as addition, subtraction, multiplication, and division. It is useful for creating new raster layers by combining or transforming existing ones.

2. Zonal Statistics: Zonal statistics calculates statistics, such as mean, maximum, minimum, or standard deviation, for a specific zone or region defined in a raster dataset. It helps in analyzing and summarizing values within predefined areas of interest.

3. Slope and Aspect Analysis: These tools calculate the slope and aspect of the terrain from elevation raster data. Slope analysis measures the steepness of the land, while aspect analysis determines the orientation or direction of the slope.

4. Reclassification: Reclassification allows you to assign new values or categories to raster cells based on specified criteria. It is helpful in reclassifying continuous data into discrete classes or grouping data for thematic mapping.

5. Density Analysis: Density analysis helps to analyze the concentration or distribution of certain phenomena in a raster dataset. It calculates the density of occurrences within a given area, such as population density or density of crime incidents.

6. Cost Distance Analysis: This tool calculates the least-cost path or distance between locations, considering the cost or resistance values assigned to raster cells. It is commonly used for modeling movement or finding the optimal route based on factors like terrain, land cover, or infrastructure.

7. Suitability Analysis: Suitability analysis assesses the suitability of areas for specific activities or criteria. It involves overlaying multiple raster datasets, assigning weights to each layer, and generating a suitability map to identify areas that meet certain criteria.

These are just a few examples of the numerous raster analysis tools available in GIS software. Each tool serves specific purposes and can be combined to perform complex analyses and generate valuable insights from raster data.

Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify 🔍 This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🤝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...

vector data analysis in GIS Surface Analysis – Interpolation – IDW

1. Surface Analysis 🗺️ This is when we try to understand and visualize how a value changes across a surface (like land). The values might be temperature, rainfall, elevation, pollution levels, etc. We often start with only some points where we know the value, but we want to guess the values everywhere in between. 2. Interpolation 📍➡️📍 Interpolation is a way of estimating unknown values between known points. Imagine you know the temperature at a few weather stations, but you want to know the temperature everywhere in between. GIS uses math to "fill in the blanks" between the points. 3. IDW (Inverse Distance Weighted) 🎯 One popular interpolation method. The idea: Points that are closer to you have more influence than points farther away. Example: If you're standing between two rain gauges, the closer one's reading will affect your estimated rainfall more than the farther one. "Inverse Distance" means: The ...