Skip to main content

Raster Data Analysis. GIS

Raster data analysis is a fundamental aspect of GIS that involves working with data represented in a grid-based format known as raster data. Raster data consists of a series of cells or pixels, where each cell represents a value or attribute associated with a specific location on the Earth's surface.

In GIS, raster data analysis refers to the process of manipulating, extracting information, and deriving new insights from raster datasets. This type of analysis enables us to understand spatial patterns, perform calculations, and make informed decisions based on the values within the raster cells.

There are several tools and techniques available for raster data analysis in GIS software. Here are some commonly used ones:

1. Raster Calculator: This tool allows you to perform mathematical operations on raster datasets, such as addition, subtraction, multiplication, and division. It is useful for creating new raster layers by combining or transforming existing ones.

2. Zonal Statistics: Zonal statistics calculates statistics, such as mean, maximum, minimum, or standard deviation, for a specific zone or region defined in a raster dataset. It helps in analyzing and summarizing values within predefined areas of interest.

3. Slope and Aspect Analysis: These tools calculate the slope and aspect of the terrain from elevation raster data. Slope analysis measures the steepness of the land, while aspect analysis determines the orientation or direction of the slope.

4. Reclassification: Reclassification allows you to assign new values or categories to raster cells based on specified criteria. It is helpful in reclassifying continuous data into discrete classes or grouping data for thematic mapping.

5. Density Analysis: Density analysis helps to analyze the concentration or distribution of certain phenomena in a raster dataset. It calculates the density of occurrences within a given area, such as population density or density of crime incidents.

6. Cost Distance Analysis: This tool calculates the least-cost path or distance between locations, considering the cost or resistance values assigned to raster cells. It is commonly used for modeling movement or finding the optimal route based on factors like terrain, land cover, or infrastructure.

7. Suitability Analysis: Suitability analysis assesses the suitability of areas for specific activities or criteria. It involves overlaying multiple raster datasets, assigning weights to each layer, and generating a suitability map to identify areas that meet certain criteria.

These are just a few examples of the numerous raster analysis tools available in GIS software. Each tool serves specific purposes and can be combined to perform complex analyses and generate valuable insights from raster data.

Comments

Popular posts from this blog

Platforms in Remote Sensing

In remote sensing, a platform is the physical structure or vehicle that carries a sensor (camera, scanner, radar, etc.) to observe and collect information about the Earth's surface. Platforms are classified mainly by their altitude and mobility : Ground-Based Platforms Definition : Sensors mounted on the Earth's surface or very close to it. Examples : Tripods, towers, ground vehicles, handheld instruments. Applications : Calibration and validation of satellite data Detailed local studies (e.g., soil properties, vegetation health, air quality) Strength : High spatial detail but limited coverage. Airborne Platforms Definition : Sensors carried by aircraft, balloons, or drones (UAVs). Altitude : A few hundred meters to ~20 km. Examples : Airplanes with multispectral scanners UAVs with high-resolution cameras or LiDAR High-altitude balloons (stratospheric platforms) Applications : Local-to-regional mapping ...

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. ๐Ÿ›ฐ️ 1. Active Remote Sensing ๐Ÿ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. ๐Ÿ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

Resolution of Sensors in Remote Sensing

Spatial Resolution ๐Ÿ—บ️ Definition : The smallest size of an object on the ground that a sensor can detect. Measured as : The size of a pixel on the ground (in meters). Example : Landsat → 30 m (each pixel = 30 × 30 m on Earth). WorldView-3 → 0.31 m (very detailed, you can see cars). Fact : Higher spatial resolution = finer details, but smaller coverage. Spectral Resolution ๐ŸŒˆ Definition : The ability of a sensor to capture information in different parts (bands) of the electromagnetic spectrum . Measured as : The number and width of spectral bands. Types : Panchromatic (1 broad band, e.g., black & white image). Multispectral (several broad bands, e.g., Landsat with 7–13 bands). Hyperspectral (hundreds of very narrow bands, e.g., AVIRIS). Fact : Higher spectral resolution = better identification of materials (e.g., minerals, vegetation types). Radiometric Resolution ๐Ÿ“Š Definition : The ability of a sensor to ...

Optical Sensors in Remote Sensing

1. What Are Optical Sensors? Optical sensors are remote sensing instruments that detect solar radiation reflected or emitted from the Earth's surface in specific portions of the electromagnetic spectrum (EMS) . They mainly work in: Visible region (0.4–0.7 ยตm) Near-Infrared – NIR (0.7–1.3 ยตm) Shortwave Infrared – SWIR (1.3–3.0 ยตm) Thermal Infrared – TIR (8–14 ยตm) — emitted energy, not reflected Optical sensors capture spectral signatures of surface features. Each object reflects/absorbs energy differently, creating a unique spectral response pattern . a) Electromagnetic Spectrum (EMS) The continuous range of wavelengths. Optical sensing uses solar reflective bands and sometimes thermal bands . b) Spectral Signature The unique pattern of reflectance or absorbance of an object across wavelengths. Example: Vegetation reflects strongly in NIR Water absorbs strongly in NIR and SWIR (appears dark) c) Radiance and Reflectance Radi...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...