Skip to main content

Green economy 🍏

The concept of a green economy refers to an economic system that aims to foster sustainable development and address environmental challenges while promoting social well-being and economic growth. It recognizes the interdependence between the economy, society, and the environment and seeks to reconcile them in a way that supports long-term ecological balance and human prosperity.

At its core, the green economy emphasizes the efficient use of natural resources, the reduction of environmental risks and ecological scarcities, and the transition to low-carbon and resource-efficient industries. It goes beyond the traditional notion of economic growth driven solely by the consumption and depletion of natural resources. Instead, it seeks to decouple economic activities from environmental degradation by embracing principles such as sustainable production, clean technologies, and renewable energy sources.

Key elements of the green economy include:

1. Sustainable sectors and industries: The green economy encourages the development of sectors that prioritize sustainability and environmental responsibility, such as renewable energy (solar, wind, hydro, etc.), energy efficiency, waste management, sustainable agriculture, eco-tourism, and green construction. These sectors aim to reduce carbon emissions, minimize waste generation, and promote the conservation of natural resources.

2. Resource efficiency and circular economy: The green economy emphasizes the efficient use of resources by adopting practices such as recycling, reuse, and waste reduction. It promotes the transition from a linear "take-make-dispose" model to a circular economy that aims to maximize the value of resources throughout their lifecycle, minimizing waste and promoting the reuse and recycling of materials.

3. Conservation and ecosystem services: The green economy recognizes the importance of protecting and restoring ecosystems and their services, such as clean air and water, pollination, soil fertility, and climate regulation. It values and integrates the benefits derived from ecosystems into economic decision-making processes, ensuring the long-term sustainability of natural resources.

4. Social inclusion and well-being: The green economy seeks to promote social equity and inclusion by ensuring that the benefits of sustainable development are shared by all members of society. It focuses on creating green jobs, providing training and education for green skills, and supporting vulnerable communities in the transition to a sustainable economy.

5. Policy and governance frameworks: The transition to a green economy requires supportive policy and governance frameworks. Governments play a crucial role in creating enabling environments through regulations, incentives, and long-term planning. International cooperation and collaboration are also important to address global environmental challenges and promote sustainable practices globally.

The concept of a green economy has gained traction in response to the urgent need to combat climate change, preserve biodiversity, and address other environmental issues. By integrating sustainability principles into economic systems, the green economy offers a pathway towards a more sustainable and resilient future, where economic development goes hand in hand with environmental stewardship and social well-being.

Comments

Popular posts from this blog

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. 🛰️ 1. Active Remote Sensing 📘 Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. 📊 Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. 👉 Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Linear Arrays Along-Track Scanners or Pushbroom Scanners

Multispectral Imaging Using Linear Arrays (Along-Track Scanners or Pushbroom Scanners) Multispectral Imaging: As previously defined, this involves capturing images using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation. Linear Array of Detectors (A): This refers to a row of discrete detectors arranged in a straight line. Each detector is responsible for measuring the radiation within a specific wavelength band. Focal Plane (B): This is the plane where the image is formed by the lens system. It is the location where the detectors are placed to capture the focused image. Formed by Lens Systems (C): The lens system is responsible for collecting and focusing the incoming radiation onto the focal plane. It acts like a camera lens, creating a sharp image of the scene. Ground Resolution Cell (D): As previously defined, this is the smallest area on the ground that can be resolved by a remote sensing sensor. In the case of linear array scanne...