Skip to main content

Future of International laws-Paris conference.


Paris Agreement, which was adopted during the 21st Conference of the Parties (COP 21) to the United Nations Framework Convention on Climate Change (UNFCCC) held in Paris in 2015. 

The Paris Agreement is a landmark international treaty that addresses climate change and aims to limit global warming well below 2 degrees Celsius above pre-industrial levels and pursue efforts to limit it to 1.5 degrees Celsius. It represents a collective commitment by nations to combat climate change, reduce greenhouse gas emissions, and adapt to its impacts.

Key aspects of the Paris Agreement include:

1. Nationally Determined Contributions (NDCs): Countries are required to submit their individual NDCs, which outline their efforts to reduce emissions and adapt to climate change. These contributions are intended to be ambitious and represent a country's efforts to achieve the overall objectives of the agreement.

2. Global Stocktake: The agreement establishes a process for a regular global stocktake to assess collective progress towards achieving the long-term goals of the agreement. This stocktake helps identify gaps and provides an opportunity for countries to enhance their climate actions.

3. Transparency Framework: The Paris Agreement emphasizes the importance of transparency and accountability. It establishes a robust transparency framework, requiring countries to regularly report on their emissions and implementation efforts, thus ensuring transparency and comparability of actions.

4. Adaptation and Loss & Damage: The agreement recognizes the need to strengthen adaptation efforts and support vulnerable countries in coping with the impacts of climate change. It also recognizes the concept of loss and damage associated with the adverse effects of climate change, including the impacts of extreme weather events and slow-onset events.

5. Climate Finance: The agreement calls for financial support from developed countries to assist developing countries in both mitigation and adaptation efforts. It aims to mobilize financial resources to address climate change, with a commitment to providing $100 billion annually by 2020, with a subsequent increase in funding in the future.

The Paris Agreement has garnered significant international support, with the majority of countries ratifying or acceding to it. It represents a collective effort to address climate change and transition toward a low-carbon, climate-resilient future. The agreement has helped shape global action on climate change and has influenced domestic policies and strategies worldwide. However, it is important to note that the effectiveness of the Paris Agreement will ultimately depend on the commitment and implementation of its provisions by the participating countries.






Comments

Popular posts from this blog

Groundwater – Porosity and Permeability

Groundwater refers to the water that resides beneath the Earth's surface in the pores and crevices of rock, sediment, and soil. Two key properties that influence the movement and storage of groundwater are porosity and permeability: 1. Porosity:    - Definition: Porosity refers to the volume percentage of void spaces (pores or openings) in a geological material, such as soil or rock.    - Role: Porosity determines how much water a subsurface material can hold. It is a measure of the material's capacity to store water.    - Factors: Porosity is influenced by the size and arrangement of particles within the material. Highly porous materials have more void spaces, while less porous materials have fewer.    - Units: Porosity is expressed as a percentage, with 0% indicating complete solidity (no pore spaces) and 100% indicating complete void space. 2. Permeability:    - Definition: Permeability refers to the ability of a geological material to transmit fluids, such as water. It meas

Ground Water

Groundwater Terminology, Concepts, and Facts Key Terms Aquifer: A geological formation that can store and transmit significant quantities of water. Water Table: The upper surface of the saturated zone in an aquifer. Recharge: The process of replenishing groundwater through precipitation or other sources. Discharge: The process of groundwater flowing out of an aquifer, typically into surface water bodies or through wells. Hydraulic Gradient: The slope of the water table. Darcy's Law: A law that describes the flow of groundwater through porous media. Permeability: The ability of a material to transmit water. Porosity: The amount of void space in a material. Concepts Groundwater Flow: Groundwater moves from areas of higher hydraulic head to areas of lower hydraulic head. Groundwater Contamination: The introduction of pollutants into groundwater. Groundwater Depletion: The excessive extraction of groundwater, leading to a decline in water table levels. Saltwater Intrusion:

Artisan Wells Basins

Artisan Wells and Basins Artesian wells are a type of well that harnesses the natural pressure of water trapped underground to force water to the surface without pumping. This phenomenon occurs in specific geological formations known as artesian basins . Key Terminologies and Concepts Aquifer: A geological formation that can store and transmit water. It is typically made up of porous rocks or sediments like sandstone or gravel. Confined Aquifer: An aquifer that is sandwiched between two impermeable layers (like clay or shale) that prevent water from escaping. Artesian Basin: A geological structure where a confined aquifer is tilted and has a recharge area at a higher elevation than the discharge area. This creates a pressure gradient that forces water to flow upwards. Potentiometric Surface: The theoretical level to which water would rise in a well drilled into an artesian aquifer if there were no restrictions. It is determined by the pressure head in the aquifer. Flowing Artesian

Watershed. Catchment. Basin

A watershed, also known as a river basin or drainage basin, is a fundamental concept in geohydrology and hydrology. It refers to a specific geographic area or region of land where all the surface water, including rainfall, snowmelt, and runoff, drains into a common outlet, such as a river, lake, or ocean. Here's an explanation of each term: 1. Watershed: A watershed is essentially a natural hydrological unit defined by the topography of the land. It represents the entire area from which all precipitation and surface water flow eventually gathers at a single point. This point is typically where the main river or stream within the watershed exits into a larger body of water, such as an ocean. Watersheds come in various sizes, from small ones that encompass a few square miles to enormous ones that cover entire continents. 2. River/Drainage Basin: A river basin or drainage basin is another way to describe a watershed. It's the land area that collects and channels water into a river

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t