Skip to main content

Future of International laws-Paris conference.


Paris Agreement, which was adopted during the 21st Conference of the Parties (COP 21) to the United Nations Framework Convention on Climate Change (UNFCCC) held in Paris in 2015. 

The Paris Agreement is a landmark international treaty that addresses climate change and aims to limit global warming well below 2 degrees Celsius above pre-industrial levels and pursue efforts to limit it to 1.5 degrees Celsius. It represents a collective commitment by nations to combat climate change, reduce greenhouse gas emissions, and adapt to its impacts.

Key aspects of the Paris Agreement include:

1. Nationally Determined Contributions (NDCs): Countries are required to submit their individual NDCs, which outline their efforts to reduce emissions and adapt to climate change. These contributions are intended to be ambitious and represent a country's efforts to achieve the overall objectives of the agreement.

2. Global Stocktake: The agreement establishes a process for a regular global stocktake to assess collective progress towards achieving the long-term goals of the agreement. This stocktake helps identify gaps and provides an opportunity for countries to enhance their climate actions.

3. Transparency Framework: The Paris Agreement emphasizes the importance of transparency and accountability. It establishes a robust transparency framework, requiring countries to regularly report on their emissions and implementation efforts, thus ensuring transparency and comparability of actions.

4. Adaptation and Loss & Damage: The agreement recognizes the need to strengthen adaptation efforts and support vulnerable countries in coping with the impacts of climate change. It also recognizes the concept of loss and damage associated with the adverse effects of climate change, including the impacts of extreme weather events and slow-onset events.

5. Climate Finance: The agreement calls for financial support from developed countries to assist developing countries in both mitigation and adaptation efforts. It aims to mobilize financial resources to address climate change, with a commitment to providing $100 billion annually by 2020, with a subsequent increase in funding in the future.

The Paris Agreement has garnered significant international support, with the majority of countries ratifying or acceding to it. It represents a collective effort to address climate change and transition toward a low-carbon, climate-resilient future. The agreement has helped shape global action on climate change and has influenced domestic policies and strategies worldwide. However, it is important to note that the effectiveness of the Paris Agreement will ultimately depend on the commitment and implementation of its provisions by the participating countries.






Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Flood prone regions India

Floods are natural disasters characterized by the overflow of water onto normally dry land. Various factors contribute to floods, including intense rainfall, rapid snowmelt, storm surges from coastal storms, and the failure of dams or levees. The geographical explanation involves understanding the key components of flood-prone regions: 1. Proximity to Water Bodies:    Flood-prone regions are often situated near rivers, lakes, or coastal areas. These locations are more susceptible to flooding as they are in close proximity to large water sources that can overflow during heavy precipitation or storms. 2. Topography:    Low-lying areas with gentle slopes are prone to flooding. Water naturally flows to lower elevations, and flat terrains allow water to accumulate easily. Valleys and floodplains are common flood-prone areas due to their topographical characteristics. 3. Rainfall Patterns:    Regions with high and concentrated rainfall are more likely to experience flooding. Intense and prol...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Volcano

Large magma chamber Bedrock Conduit (pipe) Base Sill Dike Layers of ash emitted by the volcano Flank Layers of lava emitted by the volcano Throat Parasitic cone Lava flow Vent Crater Ash cloud