Skip to main content

Dasymetric Map. 🗺️

In cartography, a dasymetric map is a type of thematic map that represents and displays data using a combination of geographic boundaries and auxiliary information. It is designed to overcome the limitations of choropleth maps, which often assign a single data value to an entire geographic unit, such as a polygon or region.

Unlike choropleth maps, which divide the map into predefined polygons and color them based on the data value associated with that entire polygon, dasymetric maps aim to allocate the data more accurately within the polygons. This is achieved by utilizing auxiliary information, such as population density, land cover, or other relevant data sets, to refine the distribution of the primary data.

The term "dasymetric" itself refers to the process of partitioning a map into subregions or zones with different characteristics. This technique involves using ancillary data to estimate the distribution of the primary data within these subregions. By taking into account the varying characteristics of different areas within a polygon, dasymetric maps provide a more precise representation of the underlying data.

To create a dasymetric map, the following steps are typically involved:

1. Define the primary data: Determine the data that you want to represent on the map, such as population, income levels, or vegetation cover.

2. Identify auxiliary data: Select auxiliary data sets that are related to the primary data and can provide information about the distribution of the primary data within each polygon. For example, population density data can be used to allocate population values within different areas.

3. Divide the map into subregions: Based on the auxiliary data, partition the map polygons into subregions or zones that have distinct characteristics and can better represent the distribution of the primary data.

4. Allocate data values: Using statistical or modeling techniques, distribute the primary data values within each subregion according to the auxiliary data. This involves estimating how the primary data is likely to be distributed within the boundaries of each subregion.

5. Visualize the map: Display the dasymetric map by assigning colors or shading to the subregions based on the allocated data values. This provides a more accurate representation of the spatial distribution of the primary data.

Dasymetric maps are particularly useful when the primary data being represented exhibits significant variation within the boundaries of the polygons, such as population densities that vary across urban and rural areas. By incorporating additional information, dasymetric mapping allows for a more detailed and nuanced portrayal of data patterns, leading to improved cartographic representations and analysis.




Comments

Popular posts from this blog

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

Disaster Management

1. Disaster Risk Analysis → Disaster Risk Reduction → Disaster Management Cycle Disaster Risk Analysis is the first step in managing disasters. It involves assessing potential hazards, identifying vulnerable populations, and estimating possible impacts. Once risks are identified, Disaster Risk Reduction (DRR) strategies come into play. DRR aims to reduce risk and enhance resilience through planning, infrastructure development, and policy enforcement. The Disaster Management Cycle then ensures a structured approach by dividing actions into pre-disaster, during-disaster, and post-disaster phases . Example Connection: Imagine a coastal city prone to cyclones: Risk Analysis identifies low-lying areas and weak infrastructure. Risk Reduction includes building seawalls, enforcing strict building codes, and training residents for emergency situations. The Disaster Management Cycle ensures ongoing preparedness, immediate response during a cyclone, and long-term recovery afterw...

Disaster Risk

Disaster Risk 

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Discrete Detectors and Scanning mirrors Across the track scanner Whisk broom scanner.

Multispectral Imaging Using Discrete Detectors and Scanning Mirrors (Across-Track Scanner or Whisk Broom Scanner) Multispectral Imaging:  This technique involves capturing images of the Earth's surface using multiple sensors that are sensitive to different wavelengths of electromagnetic radiation.  This allows for the identification of various features and materials based on their spectral signatures. Discrete Detectors:  These are individual sensors that are arranged in a linear or array configuration.  Each detector is responsible for measuring the radiation within a specific wavelength band. Scanning Mirrors:  These are optical components that are used to deflect the incoming radiation onto the discrete detectors.  By moving the mirrors,  the sensor can scan across the scene,  capturing data from different points. Across-Track Scanner or Whisk Broom Scanner:  This refers to the scanning mechanism where the mirror moves perpendicular to the direction of flight.  This allows for t...