Skip to main content

Dasymetric Map. 🗺️

In cartography, a dasymetric map is a type of thematic map that represents and displays data using a combination of geographic boundaries and auxiliary information. It is designed to overcome the limitations of choropleth maps, which often assign a single data value to an entire geographic unit, such as a polygon or region.

Unlike choropleth maps, which divide the map into predefined polygons and color them based on the data value associated with that entire polygon, dasymetric maps aim to allocate the data more accurately within the polygons. This is achieved by utilizing auxiliary information, such as population density, land cover, or other relevant data sets, to refine the distribution of the primary data.

The term "dasymetric" itself refers to the process of partitioning a map into subregions or zones with different characteristics. This technique involves using ancillary data to estimate the distribution of the primary data within these subregions. By taking into account the varying characteristics of different areas within a polygon, dasymetric maps provide a more precise representation of the underlying data.

To create a dasymetric map, the following steps are typically involved:

1. Define the primary data: Determine the data that you want to represent on the map, such as population, income levels, or vegetation cover.

2. Identify auxiliary data: Select auxiliary data sets that are related to the primary data and can provide information about the distribution of the primary data within each polygon. For example, population density data can be used to allocate population values within different areas.

3. Divide the map into subregions: Based on the auxiliary data, partition the map polygons into subregions or zones that have distinct characteristics and can better represent the distribution of the primary data.

4. Allocate data values: Using statistical or modeling techniques, distribute the primary data values within each subregion according to the auxiliary data. This involves estimating how the primary data is likely to be distributed within the boundaries of each subregion.

5. Visualize the map: Display the dasymetric map by assigning colors or shading to the subregions based on the allocated data values. This provides a more accurate representation of the spatial distribution of the primary data.

Dasymetric maps are particularly useful when the primary data being represented exhibits significant variation within the boundaries of the polygons, such as population densities that vary across urban and rural areas. By incorporating additional information, dasymetric mapping allows for a more detailed and nuanced portrayal of data patterns, leading to improved cartographic representations and analysis.




Comments

Popular posts from this blog

Geography of Landslides. Mitigation and Resilience.

A landslide is a geological event in which a mass of rock, earth, or debris moves down a slope under the force of gravity. Landslides can range in size from small to large and can be triggered by natural events such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as construction or mining. The geography of landslides is affected by a variety of factors that can increase the likelihood of landslides occurring in a particular area. These factors include slope angle and steepness, the type of soil and rock present, the climate and weather patterns of the region, the presence or absence of vegetation, and human activities such as construction, mining, and deforestation. Areas with steep slopes are more prone to landslides because gravity has a stronger effect on loose soil and rock, making it more likely to move downhill. Similarly, areas with loose, sandy soil or weak, fractured rock are more prone to landslides because they are less stable and more easil...

Role of Geography in Disaster Management

Geography plays a pivotal role in disaster management by facilitating an understanding of the impact of natural disasters, guiding preparedness efforts, and supporting effective response and recovery. By analyzing geographical features, environmental conditions, and historical data, geography empowers disaster management professionals to identify risks, plan for hazards, respond to emergencies, assess damage, and monitor recovery. Geographic Information Systems (GIS) serve as crucial tools, providing critical spatial data for informed decision-making throughout the disaster management cycle. Key Concepts, Terminologies, and Examples 1. Identifying Risk: Concept: Risk identification involves analyzing geographical areas to understand their susceptibility to specific natural disasters. By studying historical events, topography, climate patterns, and environmental factors, disaster management experts can predict which regions are most vulnerable. Terminologies: Hazard Risk: The pr...

Landslides. USGS

Landslides. TYPES OF LANDSLIDES The term "landslide" describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move by falling, toppling, sliding, spreading, or flowing. The animated GIF shows a graphic illustration of different types of landslides, with the commonly accepted terminology describing their features. The various types of landslides can be differentiated by the kinds of material involved and the mode of movement.

Geography of Flood. Types. Charector.

The geography of floods refers to the characteristics and patterns of floods in different geographic regions. Floods can occur in various landscapes, such as mountains, plains, coastal areas, and urban environments. The geography of a region plays a significant role in determining the frequency, magnitude, and impacts of floods. Some of the factors that influence the geography of floods include: Topography: The shape and elevation of the land can affect the flow and accumulation of water during a flood. For example, flat terrain can lead to slow-moving and widespread flooding, while steep slopes can result in flash floods and landslides. Climate: Regions with high rainfall or snowmelt can experience more frequent and intense floods, while dry regions may experience flash floods due to sudden, heavy rainfall. Hydrology: The characteristics of a river basin, such as its size, shape, and water flow, can influence the severity of a flood. For example, large river basins with extensive floo...

Scope of Disaster Management

Disaster management refers to the systematic approach to managing and mitigating the impacts of disasters, encompassing both natural hazards (e.g., earthquakes, floods, hurricanes) and man-made disasters (e.g., industrial accidents, terrorism, nuclear accidents). Its primary objectives are to minimize potential losses, provide timely assistance to those affected, and facilitate swift and effective recovery. The scope of disaster management is multifaceted, encompassing a series of interconnected activities: preparedness, response, recovery, and mitigation. These activities must be strategically implemented before, during, and after a disaster. Key Concepts, Terminologies, and Examples 1. Awareness: Concept: Fostering public understanding of potential hazards and appropriate responses before, during, and after disasters. This involves disseminating information about risks, safety measures, and recommended actions. Terminologies: Hazard Awareness: Recognizing the types of natural...