Skip to main content

Dasymetric Map. πŸ—Ί️

In cartography, a dasymetric map is a type of thematic map that represents and displays data using a combination of geographic boundaries and auxiliary information. It is designed to overcome the limitations of choropleth maps, which often assign a single data value to an entire geographic unit, such as a polygon or region.

Unlike choropleth maps, which divide the map into predefined polygons and color them based on the data value associated with that entire polygon, dasymetric maps aim to allocate the data more accurately within the polygons. This is achieved by utilizing auxiliary information, such as population density, land cover, or other relevant data sets, to refine the distribution of the primary data.

The term "dasymetric" itself refers to the process of partitioning a map into subregions or zones with different characteristics. This technique involves using ancillary data to estimate the distribution of the primary data within these subregions. By taking into account the varying characteristics of different areas within a polygon, dasymetric maps provide a more precise representation of the underlying data.

To create a dasymetric map, the following steps are typically involved:

1. Define the primary data: Determine the data that you want to represent on the map, such as population, income levels, or vegetation cover.

2. Identify auxiliary data: Select auxiliary data sets that are related to the primary data and can provide information about the distribution of the primary data within each polygon. For example, population density data can be used to allocate population values within different areas.

3. Divide the map into subregions: Based on the auxiliary data, partition the map polygons into subregions or zones that have distinct characteristics and can better represent the distribution of the primary data.

4. Allocate data values: Using statistical or modeling techniques, distribute the primary data values within each subregion according to the auxiliary data. This involves estimating how the primary data is likely to be distributed within the boundaries of each subregion.

5. Visualize the map: Display the dasymetric map by assigning colors or shading to the subregions based on the allocated data values. This provides a more accurate representation of the spatial distribution of the primary data.

Dasymetric maps are particularly useful when the primary data being represented exhibits significant variation within the boundaries of the polygons, such as population densities that vary across urban and rural areas. By incorporating additional information, dasymetric mapping allows for a more detailed and nuanced portrayal of data patterns, leading to improved cartographic representations and analysis.




Comments

Popular posts from this blog

Types of Remote Sensing

Remote Sensing means collecting information about the Earth's surface without touching it , usually using satellites, aircraft, or drones . There are different types of remote sensing based on the energy source and the wavelength region used. πŸ›°️ 1. Active Remote Sensing πŸ“˜ Concept: In active remote sensing , the sensor sends out its own energy (like a signal or pulse) to the Earth's surface. The sensor then records the reflected or backscattered energy that comes back from the surface. ⚙️ Key Terminology: Transmitter: sends energy (like a radar pulse or laser beam). Receiver: detects the energy that bounces back. Backscatter: energy that is reflected back to the sensor. πŸ“Š Examples of Active Sensors: RADAR (Radio Detection and Ranging): Uses microwave signals to detect surface roughness, soil moisture, or ocean waves. LiDAR (Light Detection and Ranging): Uses laser light (near-infrared) to measure elevation, vegetation...

geostationary and sun-synchronous

Orbital characteristics of Remote sensing satellite geostationary and sun-synchronous  Orbits in Remote Sensing Orbit = the path a satellite follows around the Earth. The orbit determines what part of Earth the satellite can see , how often it revisits , and what applications it is good for . Remote sensing satellites mainly use two standard orbits : Geostationary Orbit (GEO) Sun-Synchronous Orbit (SSO)  Geostationary Satellites (GEO) Characteristics Altitude : ~35,786 km above the equator. Period : 24 hours → same as Earth's rotation. Orbit type : Circular, directly above the equator . Appears "stationary" over one fixed point on Earth. Concepts & Terminologies Geosynchronous = orbit period matches Earth's rotation (24h). Geostationary = special type of geosynchronous orbit directly above equator → looks fixed. Continuous coverage : Can monitor the same area all the time. Applications Weather...

India remote sensing

1. Foundational Phase (Early 1970s – Early 1980s) Objective: To explore the potential of space-based observation for national development. 1972: The Space Applications Programme (SAP) was initiated by the Indian Space Research Organisation (ISRO), focusing on applying space technology for societal benefits. 1975: The Department of Space (DoS) was established, providing an institutional base for space applications, including remote sensing. 1977: India began aerial and balloon-borne experiments to study Earth resources and assess how remote sensing data could aid in agriculture, forestry, and hydrology. 1978 (June 7): Bhaskara-I launched by the Soviet Union — India's first experimental Earth Observation satellite . Payloads: TV cameras (for land and ocean surface observation) and a Microwave Radiometer. Significance: Proved that satellite-based Earth observation was feasible for India's needs. 1981 (November 20): Bhaskara-II launche...

Natural Disasters

A natural disaster is a catastrophic event caused by natural processes of the Earth that results in significant loss of life, property, and environmental resources. It occurs when a hazard (potentially damaging physical event) interacts with a vulnerable population and leads to disruption of normal life . Key terms: Hazard → A potential natural event (e.g., cyclone, earthquake). Disaster → When the hazard causes widespread damage due to vulnerability. Risk → Probability of harmful consequences from interaction of hazard and vulnerability. Vulnerability → Degree to which a community or system is exposed and unable to cope with the hazard. Resilience → Ability of a system or society to recover from the disaster impact. πŸ‘‰ Example: An earthquake in an uninhabited desert is a hazard , but not a disaster unless people or infrastructure are affected. Types Natural disasters can be classified into geophysical, hydrological, meteorological, clim...

Man-Made Disasters

  A man-made disaster (also called a technological disaster or anthropogenic disaster ) is a catastrophic event caused directly or indirectly by human actions , rather than natural processes. These disasters arise due to negligence, error, industrial activity, conflict, or misuse of technology , and often result in loss of life, property damage, and environmental degradation . Terminology: Anthropogenic = originating from human activity. Technological hazard = hazard caused by failure or misuse of technology or industry. πŸ”Ή Conceptual Understanding Man-made disasters are part of the Disaster Management Cycle , which includes: Prevention – avoiding unsafe practices. Mitigation – reducing disaster impact (e.g., safety regulations). Preparedness – training and planning. Response – emergency actions after the disaster. Recovery – long-term rebuilding and policy correction. These disasters are predictable and preventable through strong...