Skip to main content

Dasymetric Map. πŸ—Ί️

In cartography, a dasymetric map is a type of thematic map that represents and displays data using a combination of geographic boundaries and auxiliary information. It is designed to overcome the limitations of choropleth maps, which often assign a single data value to an entire geographic unit, such as a polygon or region.

Unlike choropleth maps, which divide the map into predefined polygons and color them based on the data value associated with that entire polygon, dasymetric maps aim to allocate the data more accurately within the polygons. This is achieved by utilizing auxiliary information, such as population density, land cover, or other relevant data sets, to refine the distribution of the primary data.

The term "dasymetric" itself refers to the process of partitioning a map into subregions or zones with different characteristics. This technique involves using ancillary data to estimate the distribution of the primary data within these subregions. By taking into account the varying characteristics of different areas within a polygon, dasymetric maps provide a more precise representation of the underlying data.

To create a dasymetric map, the following steps are typically involved:

1. Define the primary data: Determine the data that you want to represent on the map, such as population, income levels, or vegetation cover.

2. Identify auxiliary data: Select auxiliary data sets that are related to the primary data and can provide information about the distribution of the primary data within each polygon. For example, population density data can be used to allocate population values within different areas.

3. Divide the map into subregions: Based on the auxiliary data, partition the map polygons into subregions or zones that have distinct characteristics and can better represent the distribution of the primary data.

4. Allocate data values: Using statistical or modeling techniques, distribute the primary data values within each subregion according to the auxiliary data. This involves estimating how the primary data is likely to be distributed within the boundaries of each subregion.

5. Visualize the map: Display the dasymetric map by assigning colors or shading to the subregions based on the allocated data values. This provides a more accurate representation of the spatial distribution of the primary data.

Dasymetric maps are particularly useful when the primary data being represented exhibits significant variation within the boundaries of the polygons, such as population densities that vary across urban and rural areas. By incorporating additional information, dasymetric mapping allows for a more detailed and nuanced portrayal of data patterns, leading to improved cartographic representations and analysis.




Comments

Popular posts from this blog

Evaluation and Characteristics of Himalayas

Time Period Event / Process Geological Evidence Key Terms & Concepts Late Precambrian – Palaeozoic (>541 Ma – ~250 Ma) India part of Gondwana , north bordered by Cimmerian Superterranes, separated from Eurasia by Paleo-Tethys Ocean . Pan-African granitic intrusions (~500 Ma), unconformity between Ordovician conglomerates & Cambrian sediments. Gondwana, Paleo-Tethys Ocean, Pan-African orogeny, unconformity, granitic intrusions, Cimmerian Superterranes. Early Carboniferous – Early Permian (~359 – 272 Ma) Rifting between India & Cimmerian Superterranes → Neotethys Ocean formation. Rift-related sediments, passive margin sequences. Rifting, Neotethys Ocean, passive continental margin. Norian (210 Ma) – Callovian (160–155 Ma) Gondwana split into East & West; India part of East Gondwana with Australia & Antarctica. Rift basins, oceanic crust formation. Continental breakup, East Gondwana, West Gondwana, oceanic crust. Early Cretaceous (130–125 Ma) India broke fr...

Geologic and tectonic framework of the Indian shield

  Major Terms and Regions Explained 1. Indian Shield The Indian Shield refers to the ancient, stable core of the Indian Plate made of hard crystalline rocks. It comprises Archean to Proterozoic rocks that have remained tectonically stable over billions of years. Important Geological Features and Regions ▪️ Ch – Chhattisgarh Basin A sedimentary basin part of the Bastar Craton . Contains rocks of Proterozoic age , mainly sedimentary. Important for understanding the evolution of central India. ▪️ CIS – Central Indian Shear Zone A major tectonic shear zone , separating the Bundelkhand and Bastar cratons . It records intense deformation and metamorphism . Acts as a suture zone , marking ancient tectonic collisions. ▪️ GR – Godavari Rift A rift valley formed due to stretching and thinning of the Earth's crust. Associated with sedimentary basins and hydrocarbon resources . ▪️ M – Madras Block An Archean crustal block in...

Seismicity and Earthquakes, Isostasy and Gravity

1. Seismicity and Earthquakes in the Indian Subcontinent Key Concept: Seismicity Definition : The occurrence, frequency, and magnitude of earthquakes in a region. In India, seismicity is high due to active tectonic processes . Plate Tectonics 🌏 Indian Plate : Moves northward at about 5 cm/year. Collision with Eurasian Plate : Causes intense crustal deformation , mountain building (Himalayas), and earthquakes. This is an example of a continental-continental collision zone . Seismic Zones of India Classified into Zone II, III, IV, V (Bureau of Indian Standards, BIS). Zone V = highest hazard (e.g., Himalayas, Northeast India). Zone II = lowest hazard (e.g., parts of peninsular India). Earthquake Hazards ⚠️ Himalayas: prone to large shallow-focus earthquakes due to active thrust faulting. Northeast India: complex subduction and strike-slip faults . Examples: 1897 Shillong Earthquake (Magnitude ~8.1) 1950 Assam–Tib...

Vector geoprocessing - Clipping, Erase, identify, Union & Intersection

Think of your vector data (points, lines, polygons) like shapes drawn on a transparent sheet. Geoprocessing is just cutting, joining, or comparing those shapes to get new shapes or information. 1. Clipping ✂️ Imagine you have a big map and you only want to keep a part of it (like cutting a photo into a smaller rectangle). You use another shape (like the boundary of a district) to "clip" and keep only what is inside. Result: Only the data inside the clipping shape remains. 2. Erase 🚫 Opposite of clipping. You remove (erase) the area of one shape from another shape. Example: You have a city map and want to remove all the park areas from it. 3. Identify πŸ” This checks which features from one layer fall inside (or touch) another layer. Example: Identify all the schools inside a flood zone. 4. Union 🀝 Combines two shapes together and keeps everything from both. Works like stacking two transparent sheets and redrawing t...

vector data analysis in GIS Surface Analysis – Interpolation – IDW

1. Surface Analysis πŸ—Ί️ This is when we try to understand and visualize how a value changes across a surface (like land). The values might be temperature, rainfall, elevation, pollution levels, etc. We often start with only some points where we know the value, but we want to guess the values everywhere in between. 2. Interpolation πŸ“➡️πŸ“ Interpolation is a way of estimating unknown values between known points. Imagine you know the temperature at a few weather stations, but you want to know the temperature everywhere in between. GIS uses math to "fill in the blanks" between the points. 3. IDW (Inverse Distance Weighted) 🎯 One popular interpolation method. The idea: Points that are closer to you have more influence than points farther away. Example: If you're standing between two rain gauges, the closer one's reading will affect your estimated rainfall more than the farther one. "Inverse Distance" means: The ...